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A WARPED PRODUCT VERSION
OF THE CHEEGER-GROMOLL SPLITTING THEOREM

WILLIAM WYLIE

ABSTRACT. We prove a new generalization of the Cheeger-Gromoll splitting
theorem where we obtain a warped product splitting under the existence of
a line. The curvature condition in our splitting is a curvature dimension in-
equality of the form C'D(0,1). Even though we have to allow warping in our
splitting, we are able to recover topological applications. In particular, for a
smooth compact Riemannian manifold admitting a density which is CD(0,1),
we show that the fundamental group of M is the fundamental group of a com-
pact manifold with non-negative sectional curvature. If the space is also locally
homogeneous, we obtain that the space also admits a metric of non-negative
sectional curvature. Both of these obstructions give many examples of Rie-
mannian metrics which do not admit any smooth density which is C'D(0,1).

1. INTRODUCTION

The Cheeger-Gromoll splitting theorem states that a complete manifold with
non-negative Ricci curvature that admits a line is isometric to a product metric
of the form R x L. A line is a geodesic v : (—00,00) — M which is minimizing
between any two points on . A simple way to construct a space with a line that
is not isometric to a product is to take the topological product R x L with metric
g = dr? + g, where g, with r € (—00,00) is a smooth one-parameter family of
smooth metrics on L. The splitting theorem implies that any such complete metric
¢ has non-negative Ricci curvature if and only if g, = go and go has non-negative
Ricci curvature.

In this paper we give a generalization of the splitting theorem which characterizes
a more general class of spaces. If there is a positive function u(r) on R such that
g = dr? + u?(r)go for a fixed metric g, then g is called a warped product over R.
Note that such metrics always contain a line in the R direction. The curvature
condition for our splitting theorem is a curvature dimension inequality, which is a
generalization of a lower bound on Ricci curvature.

Definition 1.1. Let (M™, g) be a Riemannian manifold and f a smooth real valued
function on M. The N-dimensional generalized Ricci tensor of the triple (M, g, f)

is
df ® df
N-—-n’

Ricéy = Ric + Hessf —

We say that (M, g, f) is CD(A\,N) (A € R, N € (—o0,q]) if Ric} > A,
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If (M, g) has Ric > A, then taking f to be constant, we will have CD(A, N) for
all N. Until recently, the study of curvature dimension inequalities has focused on
the cases N > n or N = co. However, there is an emerging body of research for
the more general condition where N < n. The first systematic investigations of
the range N < n appeared almost simultaneously [OhtI16,KMI7]. Ohta [Oht16]
showed that the CD(K, N) condition where N < 0 is characterized by convexity
properties of a relative entropy. In particular, this allows one to make sense of
the CD(K,N), N < 0, condition on non-smooth spaces; also see the earlier works
of Ohta-Takatsu [OT11,/0T13]. Kolesnikov-Milman [KM17] and Milman [Mill7]
have also studied isoperimetric, functional, and concentration properties of spaces
satisfying CD(X,N), N < 1. Also see Klartag [Klal7]. For interesting examples
of CD(K,N) densities on the sphere, see [Mil]. As is pointed out by Milman,
the study of curvature dimension inequalities on Euclidean space with N < 0
was investigated in the 1970s by Borell [Bor74] and Brascamp-Lieb[BL76]. We
should also caution the reader that our definition of C'D(A, N), which matches
[Mil17], is not equivalent to the definition given by Bakry-Emery [BES85| in the
range N € [0,n); see [Mill7, Section 7.5].

We will add to these works by generalizing the splitting theorem to the C'D(0, N)
condition where N < 1. The first results for weighted Ricci curvature were proven
by Lichnerowicz in [Lic70,Lic71]. One of his results (in our notation) is that if
there is a bounded function f such that (M, g, f) is CD(0,0), then the Cheeger-
Gromoll splitting theorem holds. Since hyperbolic space admits an unbounded
density which is CD(0, o0), the assumption that f be bounded is necessary. Fang-
Li-Zhang [FLZ09] also showed that the splitting theorem holds for CD(0, N), N >
n, with no assumptions on f, and improve Lichnerowicz’s result for CD(0, c0) by
only assuming an upper bound on f. The splitting theorem for non-smooth spaces
in the case N > 1 has also recently been proven by Gigli [Gigl4l|Gig].

We will show that Lichnerowicz’s smooth splitting theorem holds for the weaker
CD(0,N) condition where N < 1. On the other hand, the theorem is not true
when N =1 as there are warped product spaces that admit a bounded function f
so that the space is CD(0,1). Our main result says that these are the only such
examples.

Theorem 1.2. Suppose that a complete Riemannian manifold (M,g) admits a
line and a function f which is bounded above which is CD(0,1). Then (M,g) is a
warped product over R.

As a corollary of the proof of Theorem we obtain the isometric product
splitting for CD(0, N) with N < 1.

Corollary 1.3. Suppose that (M, g) is a complete Riemannian manifold that ad-
mits a line and a function f which is bounded above which is CD(0,N) for some
N < 1. Then M splits isometrically as a product R x L and f is a function on L
only.

Remark 1.4. We actually prove versions of Theorem and Corollary [[.3] that are
more general in two ways. The first is that we can weaken the upper bound on the
f assumption to an integral condition along geodesics that we call f-completeness.
This condition turns out to be equivalent to the completeness of a certain weighted
affine connection; see [WY] for further study in this direction. Secondly we have
versions where the function f can be replaced with a vector field X. We also prove
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a version of the splitting theorem for manifolds with boundary. We delay discussing
these results until sections 5 and 6.

By applying the Cheeger-Gromoll splitting theorem iteratively one can show
that a complete non-compact manifold of non-negative Ricci curvature is isometric
to a product of a Euclidean space and a space with no lines. We also obtain a
sharp structure theorem for spaces which are CD(0,1) with f bounded above. We
obtain a topological splitting M = R* x N, but the metric is a warped product
g =dr? +u?(r) (gre—1 + gn), where gy is a metric with no lines. See Theorem 1]
below for the precise statement.

Despite the weaker geometric splitting, we are able to recover the classical ap-
plications to topology and homogeneous spaces of the Cheeger-Gromoll splitting
theorem. For example, an obvious corollary is that if (M, g, f) is CD(0,1) and f is
bounded above, then M has at most two ends, and only one end if there is a point
with Ricy > 0.

Another topological result comes from applying the splitting theorem to the
universal cover of a compact (M, g, f) which is CD(0,1). When equipped with the
pullback of f and g, the universal cover will also be C'D(0,1) and the potential
function will be bounded. In this situation we obtain a sharp geometric structure
theorem for the universal cover; see Theorem for the precise statement. Using a
result of Wilking [Wil00] along with the arguments of Cheeger-Gromoll we obtain
the following statement about the topology of compact C'D(0, 1) spaces.

Theorem 1.5. Suppose that (M, g, f) is CD(0,1) with M compact. Then:

(1) m (M) is the fundamental group of a compact manifold with non-negative
sectional curvature.

(2) b1 (M) <n and by (M) = n if and only if M is isometric to a flat manifold
and f is constant.

(3) If moreover, there is a point where Ric} > 0, then w1 (M) is finite.

This result gives many examples of compact Riemannian manifolds which do not
support any function f which is CD(0,1). In fact, it is an open question whether
there is a topological difference between spaces which are CD(0, N) and spaces of
non-negative Ricci curvature. That is, we have the following question: if (M, g, f)
is CD(0,N) does M also support a metric with non-negative Ricci curvature?
[KWT17, Proposition 3.7] implies this is true if (M, g) is compact and homogeneous
and, in fact, g must have non-negative Ricci curvature. Using the splitting theorem
we also obtain a complete classification to compact locally homogeneous spaces
which are CD(0, 1).

Theorem 1.6. Suppose (M,g, f) is CD(0,1) where (M,g) is a compact locally
homogeneous space. Then M is a flat bundle over a compact locally homogeneous
space of non-negative Ricci curvature. In particular, M admits a (possibly different)
imvariant metric of non-negative sectional curvature.

Although Milman [Mill7] has obtained information about spaces which are
CD(0,N) with N < 1, Theorem appears novel as it seems to be the first
result in the literature for the case N = 1. The main new ingredient of the proof of
our splitting theorem is a new Bochner type formula which we use to obtain a new
Laplacian comparison theorem for a C' D(0, 1) space. Our Bochner formula general-
izes the classical one for Ricci curvature in a different way from the Bochner formu-
las of Lichnerowicz [Lic70,Lic71] Bakry-Emery [BES5,[Bak94], and Ohta [OLt16]



6664 WILLIAM WYLIE

for CD(0,N) in the N = oo, N > n, and N < 0 cases respectively. Under the
CD(0,1) assumption, our formula only applies to distance functions, but it gives a
philosophical connection between Bakry-Emery’s definition of curvature dimension
and the results in [Mill7,[KM17]. Further applications of the Bochner formula are
developed in [WY].

One way in which to summarize our results is to say that N = 1 is a critical
parameter for the splitting theorem where the isometric splitting theorem fails but
is replaced by the weaker warped product splitting. A natural question is whether
warped product splitting holds for N € (1,n). Our methods do not seem to say
anything in this case.

After the completion of this paper, some similar rigidity theorems for Bakry-
Emery Ricci tensors for Lorentzian manifolds have also been established in [WW16].
The same limited loss of rigidity from an isometric product to a warped product is
also found in that case.

We would also like to point out that the intuition that led us to consider that
N = 1 might be a critical dimension, came from recent work of the author that
defines a notion of sectional curvature for manifolds with density [Wyl15]. In that
work, we develop a notion of weighted sectional curvature, which we called 5ec;.
It comes up from considering modifying the radial curvature equation applied to
Jacobi fields. The average of curvatures secy over an orthonormal basis is Ric}c in
the same way that the sectional curvatures average to the Ricci curvature. Some
of the examples in the next section arise in [KWI7] in the context of studying
weighted sectional curvatures and our new Bochner formula can be derived from
tracing some of the equations in [Wyl15].

2. TWISTED AND WARPED PRODUCTS OVER R

In this section we discuss the examples that arise in our splitting theorem and
also show that Lichnerowicz splitting theorem does not hold for CD(0, 1). We have
to initially consider spaces which are slightly more general than a warped product.
Let (L,hr) be an (n — 1)-dimensional Riemannian manifold, let M = R x L, and
let ¥ (r, p) be an arbitrary real valued function on M. A twisted product metric over
R is a metric gp; of the form

20
gv =dr? +enThy, r € (—00,00).

Twisted products always contain a line given by the geodesic v(t) = (¢, x¢), where
xo is a fixed point in L. If ¢ is a function of r only, then the metric g, is called a
warped product.

The connection and Ricci tensor of a twisted product, can be found for example
as a special case of the equations in [FLGRKUOQ1].

Proposition 2.1. Let gy = dr? + et hr and let U and V be vector fields on L.

Then the Riemannian connection of gps is given by

B 1 oy
VB%V  (n—1) (’97“/’

VoV = VEV 4+ L (Du@)V + Dy()U — gus(U,V)V0).
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The Ricci tensor is given by

ric (29N _ 9% 1 [(oy\?
“\arar) = “a7 azilar)
N _ @2-n)
Ric (E,V) = n—1 DvD%'l/J,
Ric(U.V) = Riey, (UV)+ (2 ) Hest (U.V) 4 DuDy(¥) - Doy (v)

1 1 V|2
+mDU(¢)Dv(¢) b (AU) | i/’|1 > gu (U, V).

A natural choice for the potential function f is f = v, since then it follows from

the equations above that Ric} (%, %) = 0. On the other hand, we can also show

that if the potential f = is CD(0,1), then the metric can be written as a warped
product.

Proposition 2.2. Suppose that (M, gur, f) is CD(0, 1) with the metric of the form
gM:dTQ—l—e%hL Then [ = ¢(r) + fr(x), where ¢ : R — R and fr, : L — R.

2¢(r)

In particular, the metric gy is a warped product of the form gy = dr? + en-1 g,
2§71 (=)

where gr, = e =)

L
Proof. Since Rle (aﬁ —) 0 and RICf > 0 we must have that RICj ( V) =0
forall VL 5

Fix a pomt x in L, and let 5 TR 1=1,. — 1, be an orthonormal basis of local
coordinates around z in the hL metric. erte Vf = a(r, y)% + by(r, y)aiyi; then

_ of _ =2 af
a= g and b; = ¢ TR

Then we have

o 0 0
et (G ) = o (V47 5)

9
i ) ok

=1 Yy

0 —27 Of 2f 1 9f of
- a(e“ayk>e””+n_1a—wa
R 1 of of
= o) TnTiagor

This combined with Proposition 2.1l implies that

. g 0
0 = RIC}- (E, W)

2—n 0 0 0 0 1 of of 1 Of of
n—laykar(f)+8r8yk(f) n—10y* or  n—10y* or

2—n\ 0 0
190 199
n—10royk"’
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This implies that g—f is constant in directions tangent to L and 887]; is constant in

the 7 direction. As in [FLGRKUOQI, Theorem 1] this implies that f = ¢(r) + fr
where fr, : L — R. Then

f 2¢(r) 2/ ()
gur = dr® + enoThy = dr? + e o1 (e = hL) ,
which gives the result. O

The triples (M, g, f) of the form given by the conclusion of Proposition are
exactly the spaces that arise in our splitting theorem. To aid our exposition we
will call these triples split spaces. That is, (M, g, f) is a split space if M is
diffeomorphic to R x L, f = ¢(r) + fr(x), where ¢ : R — R and f1, : L — R, and

gy = dr? + e%yl) gr, for a fixed metric g;, on L. From the calculations above we
have that Ric} (%, ) = 0 for any split space.

In order for a split space to be C'D(0,1) we need an additional curvature as-
sumption for the triple (L, gr, fr). In considering what this condition should be,
note that it is not true that the isometric product of spaces which are C'D(0,1)
are C'D(0,1). This is because the definition of the curvature dimension condition
depends on the dimension of the manifold. In fact, the product metric L"™* x R¥
with a potential function f defined on L admits CD(0, 1) if and only if (L"~*, g1, f)
is CD(0,1 — k). This motivates the following proposition.

Proposition 2.3. A split space (M, gur, f) is CD(0,1) if and only if
. 1 0% 20
(Ricy, )}, > sup (n_ 1 8) o

In particular, if (M, g, f) is CD(0,1), then (L, g1, fr) is CD(0,0).

Proof. From Proposition we already see that Ric}c (%,Y) = 0 for all vector

fields Y, so we just need to consider Ric} (U, V) for U,V L %. From Proposition
21 we have that

1 (06
Hessp(U,V) = n—1<3_(f) gm (U, V),
¢ (0
a0 = G (5)
and thus
, , 1 (8% (06
Ric(U,V) = Ric,y, (va)—n_1<m+<5) gu (U, V).
Moreover,
Hessf (U, V) = Hess¢(U, V) + Hess” f1(U, V)
1 [0¢\? .
=2 (5) ) et ),
So
1 NG 1 (8¢
Ricy(U,V) = (Ricg, )y, (U,V)—m(m gu (U, V),

which gives the first part of the result.
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Now suppose that (L, g, fr) is not CD(0,0). Then there is a constant a > 0
such that

1 0%¢ < =26

n—1 W S —aen .
Letting y = ¢/(n — 1) we have y” < —ae~2¥. Solutions to this inequality can be
bounded above by the appropriate solutions to the equation v’ = —ae~2*. This
equation can be solved explicitly and we can see that all solutions v go to —oco in
finite time, but this contradicts that ¢ is defined for all r. O

Now we can construct the examples of spaces with bounded f and containing
a line which do not split as products but are C'D(0,1). These spaces show that
Lichnerowicz’s splitting theorem does not hold for the C'D(0, 1) condition.

Corollary 2.4. Let ¢ : R — R be a bounded C? function which has bounded
first and second derivatives. Then there exists \ large enough such that the metric

dt® + e%gsg with f = ¢ is CD(0,1) where SY is the sphere of constant Ricci
curvature X.

Proof. In the calculations above we have fr = 1. Choose A such that A >
sup,. ( L az‘be%). Then by Proposition 23] the desired space is CD(0,1). O

n—1 or2

In the next section, we will show that split spaces are the only complete spaces
with f bounded above which are CD(0,1) and contain a line.

3. PROOF OF THE SPLITTING THEOREM

We now turn our attention to proving the splitting theorem. The first component
is a Bochner formula. The usual Bochner formula for Ricci curvature is that for a
C? function h we have

1
5A|Vh|2 = |Hessh|? + Ric(Vh, Vh) + g(Vh, VAR).
Using Cauchy-Schwarz on the |Hessh|? term and assuming the Ricci curvature
bound Ric > K gives
(Ah)?
n

1
5A|Vh|2 > + K|Vh|* 4+ g(Vh, VAR).

Now let f be a function on M, the weighted, or f-Laplacian is Ay = A — Dyy.
Then one has the following formula [Lic70]:

1 .
(3.1) 5Af|Vh|2 = [Hessh|* + Ric}* (Vh, Vh) + g(Vh, VAyh).

For curvature dimension inequalities of generalized dimension less than n we
have the following Bochner type formula.

Lemma 3.1. Let (M", g, f) be a manifold with density that is CD(K,n —m) for
some integer m = 1,2,...,n. Suppose that h is a C® function in a neighborhood of
a point p such that Hessh|, has m non-zero eigenvalues. Let v = ef/m: then

l 2 2 2(Afh)2 2 2 2
50 A¢|VR]* >wv - + v*K|Vh|* + g(Vh, V(v°Ah)).

Moreover, equality is achieved if and only if the m non-zero eigenvalues of Hessh|,
are all equal and Ric}™ " (Vh, Vh) = K|Vh|?.
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Proof. We start with (B.0]) multiplied by v?,
1
U2§Af|Vh|2 = v*|Hessh|* + v*Ric}(Vh, V) + v*>g(Vh, VAsh).

Then we have

h
9(Vh,V(v*Ash)) = v*g(Vh, VAsh) + 2UQWAM
and
lHesshf? > o2 B _ 2 (Bsh+g(Vh. V)’
>t -
2 2
.2 ((Afh) 9V § oy 9O V) )
m m m

Combining these three equations gives
l 2 2 2 (Afh)2 2R ..n—m 2
5 A¢|Vh]* > o + v°Ric}y " (Vh, Vh) + g(Vh, V(0" Ah)).

Applying Ric}™™ > K then gives the formula in the lemma.
If the inequality is an equality, then we must have Ric}™"(Vh, Vh) = K|Vh|?

and |Hessh|? = %, which implies all of the non-zero eigenvalues of Hessh are
the same. O

Note that Lemma [3.1] will apply to any function A when m = n, thus it gives a
Bochner formula for CD(K,0). In this paper, we’ll be applying this to a (general-
ized) distance function r, i.e., a function such that [Vr| =1 on an open set where
the function r is smooth. For a distance function, we have Vv, Vr = 0 implying
that Hessr has at most (n — 1) non-zero eigenvalues and that the integral curves of
r are unit speed geodesics. From the Bochner formula we derive a new Laplacian
comparison for the distance function for the condition C'D(0,1).

Theorem 3.2. Let (M, g, f) satisfy the CD(0,1) condition. Fix a point p € M
and let r be the distance function to p. Let q be a point such that r is smooth at q,
and let v(t) be the unique minimal geodesic from p to q, parametrized by arc-length.

Then
(n—1)

v2(q) fy @ v=2(y(1)dt

(Agr)(a) <

s
where v = en—1.

Remark 3.3. Note that when f is constant, we have that v = ¢ for a positive
constant and

@ [ e =
so we recover the usual Laplacian comparison, Ar < "T’l for Ric > 0.
Proof. Apply Lemma B to h = r to obtain
(B&yr)?

d
— (v2Afr) < —p? 1

dt -
If we set A\ = (’UQAf?“) o~ we have
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which is a Ricatti equation that was also used in [Wyl15|. For any sufficiently small
€, we have

/\2
C2(n—1)

r(q) r(q)
-n [ g < = [ e taw
r(q)
(n—1) (@) + A7) < - / =2 (4 (1)) dt.

Since A(g) — oo as € — 0 we have

r(q)
(n—1) (-A"1(r(g))) < - / V=2 (y(8))dt,

A(r(q)) <

This implies the result by the definition of . O

The proof of our splitting theorem follows the classical argument using Busemann
functions. Given a non-compact manifold M and a ray v we define the Busemann
function to 7 to be the function b7 (z) = lims oo (t — d(x,v(t))). b7 is Lipschitz
with Lipschitz constant 1 and is thus differentiable almost everywhere. We want to
show that when we have a C'D(0,1) space with f bounded above, then A;bY > 0.

At the points where the Busemann function is not smooth, we interpret A ;b in
the weak sense in terms of barrier functions. That is, for a Lipschitz function h we
say that Af(h) > 0 at a point = if, for every € > 0, there is a C? function h. defined
in a neighborhood of z such that h.(z) = b7(x), he < b7 in a neighborhood of =,
and Ag(he) > —e. The notion that a function has Ayh < 0 is defined similarly.
We call the functions h. barrier functions.

Lemma 3.4. Suppose that (M, g, f) is CD(0,1) and f is bounded above. Then
Ap(b7) > 0.

Proof. Let x € M. We construct the barrier functions for b7 in the standard way.
That is, let t; — oo and let o; be minimal geodesics from x to (t;), the sequence
o’(0) sub-converges to some v € T, M. Let 7 be the geodesic with 7(0) = x and
~'(0) = v. Then 7 is a ray, called an asymptotic ray to 7.

Define h;(y) =t — d(y,7(t)) + b7 (x), by the standard arguments in for example
[WW09], h: is a smooth barrier function to b7 at 2. Now we compute

_ —(n—1)
o2(y) f3 T w2 (y(s))ds
By the assumption that f is bounded from above, we have that the quantity
fod(yﬁ(t)) v™2(7(s))ds goes to oo as t — oo, implying that A(b7) > 0. O

Aside from using the Bochner formula to control the Laplacian of the distance
function and thus the Busemann functions, the other application of the Bochner
formula used in the splitting theorem is in classifying constant gradient harmonic
functions on spaces with Ric > 0 as linear functions in a flat factor. We get a
different rigidity classification for C'D(0, 1).
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Lemma 3.5. Suppose that (M,g, f) is CD(0,1) where (M, g) is a complete Rie-
mannian manifold. If there is a smooth function r on (M,g) such that |Vr|?> =1

and A¢(r) = 0, then the metric g is a warped product of the form g = dr? —|—e%ﬁ?gL
and [ = ¢(r) + fr where fr, : L — R.

Proof. The fact that M splits topologically as R x L is a simple consequence of
Morse theory and is true whenever one has a smooth function r with |Vr| = 1. We
can write the metric as ¢ = dr?+g,., where g, is the metric restricted to a level set of
r. The assumptions imply that we have equality in Lemma [3.1] so Ric}(Vr, Vr)=0
and Hessr = ag, for some function a.. But we also have Ar = (n—1)a = g(Vf, Vr)
SO

Vf,Vr
Hessr = M -
n—1
This implies that
LV'r (e;_iégr) =0
o 2(£(r,) = £(0,)) L .. .
which implies that g, = e n=1 go. This gives us that the metric is a twisted
2f ~2£(0,-)
product g = drz—i—eﬁ_lgL where g;, = e »~1T gq is a fixed metric on L. Proposition
then implies a warped product splitting, which completes the proof. O

Now with the lemmas above we can quickly prove the splitting theorems using
the standard arguments involving Busemann functions.

Proof of Theorem [L2. Let 7 be a line in our space, and let ™ and v~ be the two
rays that make up the line 7. Let b* be the corresponding Busemann functions.
From Lemma [34] we know that A(b*) > 0. Using the standard arguments in the
first part of the proof of, for example, [WW09, Theorem 6.1] using the maximum
principle one obtains that b* = —b~ thus A;(b*) = 0, which implies that b* are
both smooth by elliptic regularity. An additional standard argument then gives
that |V(b*)| = 1 at every point. From Lemma [3.5] we obtain the warped product
splitting. ([l

Proof of Corollary [L3l Since (M, g, f) is CD(0, N), it is also CD(0, 1) so Theorem
implies that g is a warped product, g = dr? + e%gL and f = ¢(r) + fr. As
we saw in section 2, we also have that Ric}c( 0 93 —0. Then,

or’ or
N (9 9 (9 9 N-1 do)*
Ricy <8r’8r Re\arar ) "\ ooy m ) (@

- () (5)

Since N — 1 < 0 we must have % = 0. This implies that metric g is a product
metric, which we can write as ¢ = dr? + gz, and f is a function on L only. O

4. STRUCTURE THEOREM AND APPLICATIONS

Now we consider applying our splitting theorem iteratively. First note that if we
have a space with a line that is CD(0,N) for N < 1 with f bounded above, then
we have an isometric product splitting M = R x L and f is a function on L. Then,
(L,gr, fr.) is CD(0,N — 1) and f, is bounded above, so if L contains a line, then
we can apply the splitting theorem to L. Iterating this argument, one obtains that



THE CHEEGER-GROMOLL SPLITTING THEOREM 6671

M is isometric to a product metric of the form M = RF x L and f is a function on
L with (L, gz, fr) being CD(0, N — k). A similar argument in the CD(0,1) case
yields the following.

Theorem 4.1. Suppose that (M, g, f) is CD(0,1) and f is bounded above. Then
M is diffeomorphic to RF x L and the metric g is of the form
20(r 26(r)
g = dr*+en1 1ng 1+ ern-Tgr,
where grr—1 denotes the Euclidean metric, (L, gr) has no lines, f = ¢(r) + fr, and
(L,gL, fL) 18 CD(O, 1-— ]{i)

Proof. Let (M, g, f) be CD(0,1) with f bounded above and containing a line. Then

we have g = dr? + e 775(1)gL/ f = ¢+ frr and by Proposition 23| (L, g1/, fr/) is
CD(0,0). Since f is bounded above, so is fr so we can split L’ isometrically as
R¥~! x L with fr = fr is a function on L only and (L, g, f1) is CD(0,1— k) and
L contains no lines. Then we obtain the splitting
26(r) 26(r)
g=dr’+en1 ggr1+en-1gp.

O

Despite the ease with which we can prove this structure theorem, there is one
subtle point that is important for the applications below. That is, for a warped
product, it is not true that lines in the fiber L will always lift to lines in M nor
that lines in M always project to lines in L. For a simple example of the later case,
consider Euclidean space written in polar coordinates dr? +1r2ggn-1 and a line that
is not through the origin. We first show that this issue with projections is excluded
if we use the fact again that f is bounded above.

Proposition 4.2. Consider a warped product metric of the form g = dr?+v2(r)gr,
where v > 0 is bounded from above. Let 7 : (a,b) — M be a unit speed minimizing
geodesic in M and write y(s) = (71(s),v2(s)), where 1 and 2 are the projections
in the factors R and L. Then:

(1) ~2 is either constant or its image is a minimizing geodesic in (L, gr).
(2) If 2 is not constant and vy is a line in M, then the image of v2 is a line in
L.

Note that ~a(s) itself will not necessarily be a geodesic because it will not be
parametrized with constant speed.

Proof. First we want to show that the image of 7, is a length minimizing curve in
gr- To see this, parametrize v such that + : [0, 1] — M; then

length(y) = [§(8)] = \/IN ()2, + 02(1(£) ()2,

Suppose that lengthg, (v2(t)) > d(72(0),v2(1)), and let o be a minimal geodesic in
L from 72(0) to 72(1). Then

6(8)| = length(o) < length(72) = / ().

In particular, there must be an open interval (o, 8) with |5(¢)| < |y2(¢)|. On (a, B)
the curve 5(t) = (y1(t),0(t)) is clearly shorter than 7|(,,z), which contradicts the
fact that - is minimizing.
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Now assume that « is a line. From (1), in order to show that o is a line
we just need to show that the length of both branches of y2(s) as s — oo and
s — —oo are infinite in g7,. To see this we use the geodesic equations for the warped
product, from which it follows (see [O’N83, Remark 39, p. 208]) that the quantity
(vov1)*gr(q2,72) = C for some constant C. Since v is bounded above, this implies
that there is a universal constant A not depending on s such that gr,(v2,v2) > A.
This implies that the length of both branches of 9 in L is infinite. |

Corollary 4.3. For the splitting given in Theorem 1], any line in (M, g) is con-
stant on the L factor.

On the other hand, for the metric
2 2¢(r) 2¢(r)
g=dr°+enTgpr—1+enTygr,
the lines in the R*~! factor will not necessarily lift to lines in M. However, we can
avoid this issue if we assume a two-sided bound on f, which will always be satisfied
for the universal cover of a compact CD(0,1) space.

Lemma 4.4. Suppose that (M, g, f) is CD(0,1) with f bounded (above and below)
and contains a line. Then either ¢ is constant in Theorem [d1l or M is diffeomorphic
toRx L and g = drz—l—e%gL where f = ¢+ fr, and (L, g1, fr,) has (Rich)?L > 0.
In particular, (L, gr) does not admit a line.

Proof. Split g = dr? + e%gL/7 f = ¢+ frr as in the proof of Theorem [Tl
We claim if ¢ is non-constant, then (Ricgy)(}y > 0. If (Rich,)(}L,(V, V) was not

positive for some choice of V, then by Proposition 23] 2272) < 0. Since f is a
bounded function this implies that ¢ is bounded and a concave function of r, so it
must be constant. (]

Now we turn our attention to applications of the splitting theorem to spaces with
symmetry and the fundamental group. These come from studying the isometry
group of non-compact spaces which are CD(0,1) with f bounded that admit a
line.

When ¢ is constant we are in the case considered by Cheeger-Gromoll where we
have a product metric g = ggr + g1, where L admits no lines. The main observation
is that isometries F' of g must take lines to lines. This implies that F’ preserves the
distributions tangent to R* and L in M. Thus, F splits into F = Fy x I, where
Fy € Tsom(R*) and Fy € Isom(L, gy.).

When ¢ is not constant we obtain a similar result. By Lemma[4.4] and Corollary
B3 we have g = dr? + e gr, and the only line for the g metric is the one in the
r-direction. Thus, since isometries take lines to lines, we also have that F' splits as
Fy x F5 where F} : R — R and F5 : L — L, moreover, simple calculation shows that
for any isometry of this form for a warped product we must have F; € Isom(R)
with ¢ o F1 = ¢ and Fy € Isom(L, g1.) (see Exercise 11 on page 214 of [O'N83]).

Now we can apply these results to the universal cover of a compact space which
is CD(0,1).

Theorem 4.5. Let (M, g, f) be compact and CD(0,1), let (M, g, f) be the universal
cover of M with the covering metric g and f the pullback of f to M. Then either

(1) M is compact,
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(2) (M,@ is isometric to a product of a flat metric on R¥ and a compact
manifold L, or

(3) ]YI/ is diffeomorphic to R x L where L is compact and § = dr® + e%gL,
f=¢+ fr, and (L,g1, f1) is CD(K,0) for some K > 0.

Note that case (3) can certainly occur, as a metric of the form § = dr? + e%gL
with ¢ periodic and f = ¢ will cover a C'D(0, 1) metric on S! x L,

Proof. Assume (1) is not true so that M is non-compact. A standard argument
shows that M contains a line. To see this take a ray v in M and let ¢; — oo. Then,
since the deck transformations of M act by isometries of g there is a compact
set K (e.g. a fundamental domain) and a sequence of isometries F; such that
Fi(y(t;)) € K for all i. Let p be a limit of a convergent subsequence of the F;(y(;)).
For some further subsequence we also have DF;((t;)) converging to a unit vector
v € T, M. Let o be the geodesic with ¢(0) = p and ¢(0) = v; then, since the distance
that a geodesic minimizes is continuous with respect to its initial conditions, o is a
line.

We can then split § = dr? + e%gL, f = ¢ + fr. If ¢ is constant, then we
can split M into R* x L where L contains no lines. If L is non-compact, then the
argument above, using the fact that the isometries of R*¥ x L must split, would
produce a line in L, therefore L must be compact in this case, and we obtain (2).

Now suppose that ¢ is not constant. We need to show that L is compact. By
Lemma [£4] L does not contain any lines. The idea is to assume that L is non-
compact and argue by contradiction that L must then contain a line. This is
complicated by the fact that geodesics of L do not necessarily lift to geodesics of
M, so we must use the geodesic equations of a warped product again.

Fix p € L and let x; be a sequence going off to infinity in L. Let 47 be a unit
speed minimal geodesic in M from (0,p) to (0,2;). Write 7(t) = (v](t), (1)),
using the warped product geodesic equations again as above we see there is a

2¢(v9 (¢ .
constant C; such that e%wé (t)|lg. = Cj. Since v : (a,b) = R must have
~1(a) = v1(b) = 0, it must have a critical point, tg. At that point,

» s o)
L=1¥1]g=e7 1a(to)lg

¢(+] (t0))
soCj=e =1 . Since ¢ is bounded, this implies that C; is bounded. Then there

is a positive constant A such that |53(t)|,, > A for all j and t.

Now consider v a ray which is a sub-sequential limit of 7. Write ~(t) =
(71(t),72(t)). Since |54 (t)],, > A we have that |32(0)|,, > A. Using the geodesic
equations for a warped product in the same way as above, we obtain a possibly dif-
ferent A such that |y2(t)|q, > A for all t. Now take a sequence (t;) with ¢, — oo
and pull back v by isometries F* to produce a line ¢ as before. Since each F? splits
as a map F} x Fi where F} is an isometry of L, if we write o(s) = (01(s), 02(s)),
then |62(s)|g, > A for all s. Therefore o9 is not a constant map so by Proposition
the image of o5 forms a line in L which achieves the desired contradiction. [

We now use Theorem to prove Theorem

Proof of Theorem [L3 First we show (3). From the proof of Theorem using
Lemma 35 if M contains a line, then at every point p there is a vector V € T,M
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with Ric}c(V7 V) = 0. Thus by Theorem [LH if Ric} > 0 at a point, then M must
be compact and 71 (M) is finite.

Identify 71 (M) as a subgroup of the isometries of M acting properly discontin-
uously and freely on M. Then as we discuss above, for F € m1(M) we can write
F = Fy x Fy where Fy € Isom(L, gr,) and, by Theorem 5, F} is in the isometry
group of flat R¥ (k = 1 when ¢ is non-constant). The projection of 7y (M) into
each factor then produces a short exact sequence

0—FE—-m(M)—-T—=0,

where I is a crystallographic group, i.e., a discrete, cocompact subgroup of the
isometry group of R¥ and E is a finite group. By [Wil00, Theorem 2.1] 7 (M)
is then the fundamental group of a compact manifold of non-negative sectional
curvature. ~

Finally if b1 (M) = n, then k must be n and then M must be flat, implying that
M is also flat. |

Finally we show that ¢ must be constant when M is locally homogeneous.

Proof of Theorem [L. Let M be the universal cover of a compact locally homo-
geneous space M. Then M is homogeneous. Apply Theorem and suppose
that ¢ were not constant. Then, since the isometry group splits and acts tran-
sitively, between any two points in R there must be a reflection or translation
Fy such that ¢ = ¢ o Fy. This implies that ¢ must be constant. Then from
Theorem M = R* x L where L is compact and homogeneous. However, by
[KW1T, Proposition 3.7], L must then also have non-negative Ricci curvature. Then
M has non-negative Ricci curvature. The rest of the structure then follows from
[CGTI1l, Theorem 5]. O

5. MANIFOLDS WITH BOUNDARY

In this section, we prove a version of the splitting theorem for compact manifolds
with boundary. The boundary M is also assumed to be smooth with outward
unit normal v. Let H be the mean curvature of 9M with respect to the outward
normal vector. The weighted (or generalized) mean curvature of the boundary is
H; = H—g(Vf,v). Just as the usual mean curvature arises in the first variation of
the Riemannian volume, the weighted mean curvature arises in the first variation
of the measure e~f dvoly.

We have the following splitting phenomenon.

Theorem 5.1. Suppose that (M, g, f) is a compact manifold with boundary which
is CD(0,1), if Hf > 0 (M is generalized mean convex) and M has more than one

boundary component, then M is a warped product over an interval M = [a,b] x L,

[ =é(r)+ fo(z), where ¢ : [a,b] = R and fr : L — R, and gy = dr? + 627‘¢—£T1)QL

for a fized metric gr, on L.

The warped products in the conclusion of the theorem have Hy = 0 on M and

Ric}c ( %, %) = 0, so we have the following corollary.

Corollary 5.2. Suppose that (M, g, f) is a compact manifold with boundary which

is CD(0,1) and M is generalized mean convez. If Ricy > 0 at a point in the interior
of M, or Hy >0 at a point in OM, then M has only one boundary component.
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By the same argument as in Corollary [[L3] we also have an isometric product in
the conclusion of Theorem B1if (M, g, f) is CD(0, N) for N < 1. Using the ideas
in the next section, Theorem [B.I] can also be extended to non-gradient fields, we
leave the statement to the interested reader.

Proof of Theorem Bl Let L be a boundary component of M and let r be the
distance to L. Let « be a unit speed geodesic from L to a point x € M which
minimizes the distance from z to L and such that (¢), ¢ > 0 is contained in the
interior of M. Then applying Lemma 3.1l to r gives

Dy, (v*Agr(y(r))) < 0.

Moreover, we have that A yr(y(r)) = —H(v(0)) as r — 0, so we have that Ayr <0
along the geodesic 7.

Now let L; be a component of M. Let Ly be another boundary component
which minimizes the distance from Lq to Lo among the other boundary components,
and let 71,72 be the distance functions to L; and Lo respectively. Consider the
function e(z) = ri(z) + ro(z). By the triangle inequality e(x) > d(L1, L2) and
the points where the minimum is achieved must lie on a geodesic v which connects
L; and Ly and only touches M at its endpoints. By the argument above Aye =
Ayri + Ayrg <0 at such a minimal point. This implies that e must be constant
by the strong maximum principle. Then there is a constant a so that r1 = a — o,
which implies that Ayry = 0. By elliptic regularity this shows that r; is smooth on
the interior of M. Then 7 is a smooth function with |[Vrq|? =1 and Af(rq) = 0.
The argument in Lemma then shows that M is a warped product. O

6. NON-GRADIENT VECTOR FIELDS

In this section we explain how the results above also have versions for non-
gradient potential fields. Curvature dimension inequalities have a well-known defi-
nition for vector fields.

Definition 6.1. Let X be a vector field on a Riemannian metric (M", g). The
N-dimensional generalized Ricci tensor is

Xt Xt

1
RicY = Ric4+ —Lyg— =22
1ICx 1c—|—2 X9 N_n

where Ly g is the Lie derivative of g with respect to X and X* is the dual one form
of X coming from g. We say that (M, g, X) is CD(A\,N) (A€ R, N € (—o0,x]) if
RicY > A

Note that with this definition Ricy = Ricyy, so the results of this section should
be viewed as generalizing our results in section 3 to non-gradient fields.

All of our results in the gradient case involve bounds on the potential function
f- While there is no potential function for a non-gradient field, we can still make
sense of bounds by integrating X along geodesics. Let X be a vector field on a
Riemannian manifold (M, g). Let v : (a,b) — M be a geodesic that is parametrized
by arc-length. Define
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where f, is a real valued function on the interval (a,b) with the property that
£, @) = g(3(t), X (v(t))). When X = Vf is a gradient field then f, = f(y(t)) —
f(7(a)), in the non-gradient case we think of f, as being the anti-derivative of X
along the curve 7. We now introduce the condition we will need for results in this
section.

Definition 6.2. Let (M, g) be a smooth non-compact complete Riemannian mani-
fold with a smooth vector field X. Then we say (M, g, X) is X-complete if for every

point y € M
=244 (4(s))
limsup inf {/ T } = 00,

r—oo l(y)=r
where the infimum is taken over all minimizing unit speed geodesics =y of the metric
g with v(0) = y. If X =V f we say that (M, g, f) is f-complete.

In general, f, depends on the parametrization of v only up to an additive con-
stant, so the notion of X-completeness does not depend on the parametrization of
the geodesic. Also note that if a vector field X has the property that f, is bounded
for all unit speed minimizing geodesics, then it is X-complete. However, even in

the gradient case, f-completeness is a weaker condition than f bounded above.
—2f+ (4(s))
One way to interpret f-completeness is that the quantity for e w=T ds is, up

oy
to a multiplicative factor, the energy of the curve v in the conformal metric e =1 g.

From this we can see that f-completeness implies that eW—E{) g is a complete metric.
Alternately, X-completeness is equivalent to the completeness of a certain modified
affine connection; see [WY] for more details.

Our most general splitting theorem is the following.

Theorem 6.3. Let (M,g) be a complete Riemannian metric supporting a vector
field X which is CD(0,1) and X-complete. If (M, g) admits a line, then M is a
twisted product metric on R x L. If X =V f, then M is a warped product.

On the other hand, it is easy to see from the formulas in Proposition 2] that
we cannot obtain a warped product splitting for non-gradient fields.

Proposition 6.4. There are metrics of the form dr? —l—e%gsn which are CD(0, 1)
where ¢ is not a function of r and X is not gradient.

Proof. For any function ¢, let X = n2 T or ¢ 4 ( ) V¢. Note that X is a gradient

field if and only if ¢ is a function of r. Then a calculation using Proposition 2.1
shows that Rick (%, Y) =0 for all Y. The formula for Rick for vectors tangent
to S™ is much more complicated. However, it is of the form

Rick (U, V) = Ric®" (U, V) + terms involving ¢ and its first
and second partial derivatives.

The terms on the right will also go to zero as ¢ and its partial derivatives go to
zero. Therefore, if we take gg» to be a round sphere with positive Einstein constant
A, there is a constant A which depends on A and the dimension such that if ¢ and
its first and second derivatives are all less than A, then Rick (U, V) > 0. O

Now we turn our attention to proving the splitting theorem. The first component
is the Bochner formula applied to the twisted Laplacian Ax = A — Dy, of the
distance function, which follows from the same argument as in Lemma 3.1l
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Lemma 6.5. Suppose (M™,g,X) is CD(0,1) and that r is a smooth distance
function on an open subset of a Riemannian manifold (M, g). Let v be an integral

Iy
curve of v and let vy = en=1. Then

d  » 2(AX7")2
ar (U’YAXT) < - n—1

where % denotes the derivative along v. Moreover, if equality is achieved at a point
p, then the (n—1) non-zero eigenvalues of Hessr|, are all equal and Rick (Vr, Vr) =
0 at p.

Proof. As is well known, the usual Bochner formula for functions,
%A|Vh|2 = [Hessh|? 4 Ric(Vh, Vh) + g(Vh, VAh),
can also be modified for non-gradient fields in the same manner as in (B.1]) to
%AXWhF = |[Hessh|? 4+ Ric¥ (Vh, Vh) + g(Vh, VAxh).

This follows directly from the identity

g(Vh,V(Dxh)) = Dvng(X,Vh)
= 9(VvnX,Vh)+g(X,VvnVh)

1
= 3 (Lxg(Vh,Vh) + Dx|Vh|?).

The proof is then identical to the proof of Lemma Bl using v, in the place of v in
the argument. ([l

Following the same arguments as in section 3, it then follows that if (M, g, X)
is CD(0,1) and X-complete, then Ax(by) > 0 for any Busemann function. In the
gradient case, we then have the splitting theorem when (M, g, f) is f-complete.
The other element needed for the splitting theorem in the non-gradient case is a
generalization of Lemma to the non-gradient case.

Lemma 6.6. Suppose that (M, g) is a complete Riemannian manifold with a smooth
vector field X that is CD(0,1). If there is a smooth function r on (M, g) such that
|Vr|?2 =1 and Axr =0, then

(1) M splits topologically as R x N, with metric of the form g = dr® + et gn,
where gy s a metric on N and ¢ : M — R,
(2) Rick(Vr,Vr) =0,

(3) X:g—f%—i—U, where U L 2.

Proof. Since |Vr| = 1 we have R x N topologically and g = dr? +g,., where g, is the
metric restricted to a level set of r. In terms of this splitting write the vector field
X =a(r, x)% 4+ Y where a: M — R and Y is tangent to N at every point. Then,
for v an integral curve of r, we have g(X,%) = a. Define a function ¢ globally on
M via the formula

o(r,z) = /07" a(t, x)dt,

where ¢ is clearly a smooth function since a is smooth.



6678 WILLIAM WYLIE

The assumptions imply that we have equality in Lemmal6.5] so Rick (Vr, Vr) = 0
and Hessr = ag, for some function a.. But we also have Ar = (n—1)a = g(X, Vr)
S0
9(X,Vr)

n—1
Since Dy.¢ = a(r,x) = g(X, Vr) this implies that

LVT‘ (e%gr) =0

Hessr = Gr-

2(¢(r,)=9(0,-))

which implies that g,, =e n=1 go- This gives us that the metric is a twisted
—26(0,)

product g = dr? +en 1gN where gy = e~ n—1  gq is a fixed metric on N. Note that

the function ¢ automatically satisfies (3) as a—f =a(r,z). O

The proof of Theorem [6.3] then follows using Lemma [6.6] and the same arguments
as in section 3. In the C'D(0,N) case N < 1 we also obtain the isometric product
splitting.

Corollary 6.7. Suppose that (M,g) is a complete Riemannian manifold and X
is a smooth vector field on M which is X-complete and CD(0,N) for N < 1. If
(M, g) admits a line, then M is isometric to a product metric M = R x L and X
is a vector field on L.

Proof. Since (M, g, X) is CD(0, N), it is also CD(0, 1) so Theorem [6:3 implies that
2 P

g is a twisted product, g = dr? + en_d)lgL . We also have that Rick (£, Z) = 0.

Since X = ’% 8 ~+ U where U L 8 , this gives us

wek (5) = (o mmm) (3)

so we must have g—f = 0. This implies that metric g is a product metric, which we
can write as ¢ = dr? 4+ hr, where hy, is a conformal metric to gr.

We can also show X is a vector field on L only using the fact that Ric§< ( %, V) =
0 for allVL . To see this, fix a point = in NV, and let 1,2—1 n—1, be an
orthonormal ba31s of local coordinates around z in the gy, metmc. erte X =b; 681 .

Then

g 0 1 Oby,
0=TRick [ ==+ | = = ——.
cx (87" 8yk> 2 or
So X is a vector field on L that does not depend on 7. O

We would also like to generalize Theorem 1] to the case where X = V f, but
the upper bound on f is replaced by f-completeness. The only obstacle that arises
in the proof is that when a space splits, it is not a priori clear that f-completeness
on the whole space should imply f-completeness on the fiber. It turns out, how-
ever, that we can use geodesic equations for a warped product to show that f-
completeness does have this natural property for the spaces in our splitting theo-
rem.

Consider a split space to be a warped product of the form dr? + et gr, with
potential function f = ¢(r) + fr. Let v be a unit speed minimizing geodesic
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and write y(s) = (y1(s),72(s)), where 71 and 7, are the projections in the fac-
tors R and L. The f-completeness condition implies for any ray of (M, gas) that

“20(11 (=) 2/ (v2(2)
J. > (e e Rt ) ds diverges. We have the following proposition.

0

Proposition 6.8. Suppose M is a split space that is f-complete and let v : (a,b) —
M be a minimizing geodesic of the form v(s) = (y1(s),v2(s)). Then:
(1) If 2 is not constant and v is a line in M, then the image of v2 is a line in
L.
(2) The manifold with density (L, gr, fr) is fr-complete.

Proof. Assume that v is a line. From part (1) of Proposition 2] which is true for
any warped product, in order to show that 5 is a line we just need to show that the

length of both branches of 75(s) as s — co and s — —oo are infinite in gr. From
4671 ()
the geodesic equations for the warped product, we have e D gr.(y2,72) = C for

some constant C'. Then

length(1alio.0y) = / algs ds = C /
0

Assume for contradiction that -2 had finite length in L. Then the function

2¢(71( ))

—2f7,(v2(s)
e T s uniformly bounded in s and so the f-completeness assumption applied
~20(y1 ()
to v implies that fooo =T ds is infinite. Up to a constant this is the length of

72, 850 we obtain a contradiction. The same argument also shows that the length of
the branch of 5 with s — —oo is also infinite.
In order to show (2), fix a point p € L and let S(7) be a unit speed geodesic

in L with 8(0) = p which is minimizing for 7 € [0,7]. We want to estimate
—2/L(()
fo — %=1 dr. First note that from part (1) of Proposition 2] and the uniqueness

of minimizing geodesics that there is a geodesic in M which is of the form ~(s) =
(71(s),72(s)) s € (0,t) such that the image of 5 is the image of 3.
We again apply the warped product geodesic equations to the geodesic v to see

—26(71 (5))
that there is a constant C, # 0 such that |v2|,, = C,e = . By compactness,
2¢( () —206(71(s))
we can thus choose C4,Cy uniformly so that Cie =) < |yalg, < Cae e

for every unit speed geodesic 8 with 5(0) = p. Then

¢ 2600 () =2L0()) 1 /! ~2/1.02())
(e n=l e n-1 ) ds < — [ e |V2lq.ds
0 C1 Jo

1 (7 =210
(61) = —_ / e #—1 dT,

Cl 0
where in the last line, we have re-parametrized the curve v5 by arc-length in g, to
obtain 8. Moreover,

t —2¢(v1(s
6.2 r = length(B) = length(y,) < Cs e = >)ds,
(6.2) g gth(~y
0

where ¢ is the length in M of the geodesic .

(©2) implies that as r — oo, t — oco. Then f-completeness of M implies that
the left-hand side of (1) blows up as r — oo and thus so does the right-hand side,
showing that L is fr-complete. O

On the other hand, in the non-gradient setting, we do not have the applications
of the splitting theorem to the universal cover of a compact manifold because it is
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not true that a vector field lifted to the universal cover is X-complete. The question
of the extent to which the Theorems and are true for non-gradient fields
appears to be largely open.
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