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Abstract
In this note, we show that compact static near-horizon geometries with negative cos-
mological constant are either Einstein or the product of a circle and an Einstein metric.
Chruściel, Reall, and Todd proved rigidity when the cosmological constant vanishes,
in which case one get the stronger result that the space is Ricci flat (Chruściel et al.
in Class Quantum Gravity 23:549–554, 2006). It has been previously asserted that a
stronger rigidity statement also holds for negative cosmological constant, but Bahuaud,
Gunasekaran, Kunduri, and Woolgar recently pointed out that this was not the case
(Bahuaud et al. in Lett Math Phys 112(6):116, 2022). They showed, moreover, that
for a compact static near-horizon geometry with negative cosmological constant, the
potential vector field X is constant length and divergence-free. We give an argument
using the Bochner formula to improve their conclusion to X being a parallel field,
which implies the optimal rigidity result. The result also holds more generally for
m-Quasi Einstein metrics with m > 0.

Keywords Quasi-Einstein manifold · Near horizon geometry · Rigidity

MSC codes 53C24 · 53C25 · 83C05 · 83C57

1 Introduction

In this paper, anm-quasi Einstein metric is a Riemannian manifold (M, g) along with
a vector field X such that

Ric + 1

2
LX g − 1

m
X∗ ⊗ X∗ = λg
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where Ric is the Ricci tensor of g, LX g is the Lie derivative of the metric, X∗ is the
dual one-form to X using the metric g, and m and λ are constants. In a slight abuse
of notation, following [1], we will call X exact or closed depending on whether the
corresponding one form X∗ is exact or closed. In terms of the vector field X , this
implies that X is exact (or gradient) if X = ∇ f for some real valued function f
defined on M and X is closed if around every point X is locally the gradient of a
function defined on an open neighborhood around the point.

There are many variations of the definition of an m-quasi Einstein metric that may
replace λ or m by functions or require X to be exact. We believe that in the first time
the term quasi-Einstein was used for this equation was in [4] where it is assumed
that λ and m were constants with m > 0 and X exact. One idea that has inspired
investigation of the m-quasi Einstein equation is the similarity to the Ricci soliton
equation, Ric + 1

2LX g = λg, which formally one can think of as the case where
m → ∞. Ricci solitons describe geometric fixed points of the Ricci flow that change
only by diffeomorphism and scaling and they are an important aspect of the study of
singularity formulation in the Ricci flow.

In fact, an early result on the study of Ricci solitons is directly relevant to our
considerations here: Ivey showed in [9] that a compact Ricci soliton, Ric+ 1

2LX g = λg
with λ ≤ 0 must be an Einstein metric with X = 0. On the one hand, Ivey’s result
is not true when the parameter m is introduced as, for example, Chen–Liang–Zhu
constructed left-invariant metrics on simple groups, which are m-quasi Einstein for
all possible values of m > 0 and λ [5]. Lim also later classified completely the locally
homogeneous three-dimensional examples [12].

On the other hand, when X is exact, Kim-Kim showed that the Ivey result does
hold when λ ≤ 0 [10]. Moreover, when X is closed and λ = 0, Chruściel–Reall–
Todd proved X must be zero [6]. They also stated that the result holds when λ < 0.
However, Bahuaud–Gunasekaran–Kunduri–Woolgar observed that the product of a
circle with an Einstein metric and X a parallel field on the S1 factor of length

√−mλ

gives a counter-example [1]. Note that clearly this example is closed but not exact.
They also show in this case that X must be a divergence-free vector of length

√−mλ.
The purpose of this note is to complete the investigation of the case where m > 0,
λ < 0, and X is closed by bridging the gap between the example and rigidity statement
in [1].

Theorem 1.1 Suppose (Mn, gM , X) is a compact m-quasi Einstein metric with closed
X and λ < 0. Then, either

(1) X = 0 and RicgM = λgM, or
(2) (M, g) is isometric to a product metric (S1 × N , dθ2 + gN ) where (N , gN ) is an

(n − 1)-dimensional Einstein metric RicgN = λgN , and X = ±√−mλ ∂
∂θ
.

When m = 2, the m-quasi Einstein metric is also called a vacuum near-horizon
geometry (with λ related to the cosmological constant by a positive factor). These
metrics arise from a limiting procedure from extreme black hole spacetime metrics,
which have dimension n + 2. If X is closed, it is called a static vacuum near-horizon
geometry. This was the motivation in [1, 6] for studying this equation in the closed
case. See [1] for more information and references in this direction. As is pointed out in
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[1], when m = 2 the examples in part (2) of Theorem 1.1 do arise as the near-horizon
geometry of the (n + 2)-dimensional space-time, gXBT Z + gN , where gXBT Z is an
extreme BTZ black hole metric, see [1] for further details.

The limiting procedure of taking extreme black hole spacetimes to near-horizon
geometries gives a number of examples of m-quasi Einstein metrics that are also
interesting from the perspective of Riemannian geometry. For example, the near-
horizon geometry of the extremalKerr space time gives a (non-closed) 2-quasi Einstein
metric on S2 with λ = 0. This metric is, in a sense, a Bakry–Emery Ricci flat metric
on the 2-sphere! See [11, Theorem 4.3] for a discussion of this metric, where it is
shown that it is the unique such rotationally symmetric metric. It is an open question
whether this is the only such metric on the 2-sphere. The corresponding uniqueness
question when λ < 0 for the near-horizon geometry of extreme AdS–Kerr blackholes
is also an interesting open question.

2 Proof of the Theorem

The idea of the proof is to show that X is a parallel field. Onemotivation for this comes
from considering the locally homogeneous case where Chen–Liang–Zhu [5] and Lim
[12] show that for any compact m-quasi Einstein metric, X must be a Killing field. If
X is Killing, then∇X is anti-symmetric. If X is closed, then∇X is also symmetric, so
this shows that a closed m-quasi Einstein metric on a compact locally homogeneous
manifold has X parallel.

In the general case, we continue the argument of [1]. In their Theorem 1.2 (iii), they
show under our assumptions that

divX = 0 and |X |2 = −mλ. (2.1)

Let p ∈ M . Then, around p we have X = ∇ f for some function f . Consider the
Bochner formula applied to f :

1

2
�|∇ f |2 = |Hess f |2 + Ric(∇ f ,∇ f ) + g(∇ f ,∇� f ).

Since � f = div(∇ f ), from (2.1), we obtain that

|∇X |2 = −Ric(X , X). (2.2)

On the other hand, (2.1) also implies that

LX g(X , X) = 2 g(∇X X , X) = DX |X |2 = 0.

So the m-quasi Einstein equation gives that

Ric(X , X) = −1

2
LX g(X , X) + |X |4

m
+ λ|X |2

= 0.
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Combined with (2.2), this shows that X is parallel, which gives a local isometric
splitting of (M, g).

To see that the splitting must be global, let ( ˜M, g̃) be the universal covering of M
with g̃ the pullback of the metric g under the covering map and ˜X the pullback of X .
Then, we have the global splitting ( ˜M, g̃) = (R× g̃N ), ˜X = ±−mλ ∂

∂r . (M, g) is then
a quotient of ( ˜M, g̃) by a group of isometries �. Since ( ˜M, g̃) is locally isometric to
(M, g), it is also a m-quasi Einstein manifold, with vector field ˜X . Moreover, as ˜X is
a parallel field, L

˜X g̃ = 0. So if ˜Y ⊥ ˜X , then the m-quasi Einstein equation gives

Ricg̃(˜Y , ˜Y ) = λ|˜Y |2.

In particular, since λ �= 0, Ricg̃(˜X , ˜X) = 0, and isometries must preserve the
eigenspaces of the Ricci tensor, this shows that the isometry group of ( ˜M, g̃) splits
as a product of the isometry group of R and g

˜N . This then implies that the quotient
(M, g) splits as a product S1 × N .

3 Some comments on the positive cosmological constant case

Perelman [13] also showed that for any compact Ricci soliton with λ > 0, one can
add a Killing field to X so that X is a gradient field. In [1], an analogous result for the
m, λ > 0 case is proven: a compact m-quasi Einstein metric with X closed is exact.
The proofs, however, are quite different and, in the m > 0 case, the assumption that
X be closed is necessary as the Kerr horizon metrics show. Note that on a complete
manifold, if a vector field X satisfies 1

2LX g − 1
m X∗ ⊗ X∗ = 0 then X = 0 by [12,

Proposition 6.2]. Therefore, for m-quasi Einstein metrics with m �= ∞, there is no
way to add to the vector field X and preserve the equation, as one can do with Killing
fields in the Ricci soliton case.

Since 2-dimensional compact m-quasi Einstein metrics with X exact have been
classified [1, 2, 7], the most natural open case to consider is 3-dimensional compact
m-quasi Einsteinmetricswith X exact. Exactm-quasi Einsteinmetrics also correspond
with (n + m)-dimensional warped product Einstein metrics. See, for example, [2, 4,
7, 10] for references in this direction. In particular, warped product Einstein metrics
produced by Böhm on S3 × S2 give 2-quasi Einstein metrics on S3, which are not
constant curvature [3]. In this case, we also see that the space of quasi-Einstein metrics
is more rich than that of Ricci solitons, since Ivey proved any compact 3-dimensional
Ricci soliton is a space of constant curvature [9]. On the other hand, since m-quasi
Einstein metrics with λ > 0 must have finite fundamental group, in dimension 3 their
universal cover is diffeomorphic to S3.

To our knowledge, the Böhm metrics are the only known examples of compact
3-dimensional 2-quasi Einstein metrics with X exact. These metrics are rotationally
symmetric. In [7], it is shown that locally conformally flat compact m-quasi Einstein
metrics with exact X are rotationally symmetric. A natural candidate for more exam-
ples that are not locally conformally flat could be doubly warped product metrics on
S3, see [7, Example 3.5]. We note that the λ = 0 case (and X not assumed closed)

123



Rigidity of compact static near-horizon geometries with… Page 5 of 5 29

of doubly warped products is addressed in [8]. It also appears to be an open ques-
tion whether the Böhm metrics can arise as the near-horizon limit of a “reasonable"
5-dimensional static spacetime such as one that is asymptotically flat or AdS.
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