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Abstract
Gradient Ricci solitons and metrics with half harmonic Weyl curvature are two natural gen-
eralizations of Einstein metrics on four-manifolds. In this paper we prove that if a metric
has structures of both gradient shrinking Ricci soliton and half harmonic Weyl curvature,
then except for three examples, it has to be an Einstein metric with positive scalar curvature.
Precisely, we prove that a four-dimensional gradient shrinking Ricci soliton with δW± = 0
is either Einstein, or a finite quotient of S3 × R, S2 × R

2 or R4. We also prove that a four-
dimensional gradient Ricci solitonwith constant scalar curvature is either Kähler–Einstein, or
a finite quotient of M×C, where M is a Riemann surface. The method of our proof is to con-
struct aweighted subharmonic function using curvature decompositions and theWeitzenböck
formula for half Weyl curvature, and the method was motivated by previous work (Gursky
and LeBrun in Ann Glob Anal Geom 17:315–328, 1999; Wu in Einstein four-manifolds of
three-nonnegative curvature operator 2013; Trans AmMath Soc 369:1079–1096, 2017; Yang
in Invent Math 142:435–450, 2000) on the rigidity of Einstein four-manifolds with positive
sectional curvature, and previous work (Cao and Chen in Trans Am Math Soc 364:2377–
2391, 2012; Duke Math J 162:1003–1204, 2013; Catino in Math Ann 35:629–635, 2013) on
the rigidity of gradient Ricci solitons.
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1 Introduction

In this paper we investigate four-dimensional gradient shrinking Ricci solitons with half
harmonic Weyl curvature (δW± = 0). A Riemannian metric g on a smooth manifold Mn is
called a gradient Ricci soliton, if there exist an f ∈ C∞(M) and a λ ∈ R, such that

Ric + ∇2 f = λg. (1)

The function f is called a potential function for the gradient Ricci soliton. By convention
we denote it by the triple (Mn, g, f ). The gradient Ricci soliton is called shrinking, steady,
or expanding, if λ > 0, λ = 0, or λ < 0, respectively. A gradient Ricci soliton is a natural
extension of an Einstein metric, since the soliton equation (1) becomes an Einstein metric
equation when f is a constant function. Gradient Ricci solitons play an important role in
Hamilton’sRicci flow [22–24] andPerelman’s [34–36] resolutions of the PoincaréConjecture
and Thurston’s Geometrization Conjecture, as they are self-similar solutions and possible
singular models of the Ricci flow, and critical points of Perelman’s entropies. See [5] for an
excellent survey.

There has been lots of effort to understand the geometry of gradient Ricci solitons, espe-
cially their classifications. For our purpose we list previous results for gradient shrinking
Ricci solitons.

For dimensions 2 and 3, following [8,23,25,32,35], the classification is complete.
For dimensions equal to or greater than 4. Following Ni and Wallach [32] and Zhang [46]

(see also alternative proofs in [10,16,32,37,46]), a locally conformally flat (W = 0) gradient
shrinking Ricci soliton is a finite quotient of Sn , Sn−1 × R, or Rn . Fernández-López and
García-Río [18], and Munteanu and Sesum [29] proved a gradient shrinking Ricci soliton
with harmonic Weyl curvature (δW = 0) is either Einstein, or a finite quotient of Nk ×R

n−k

for 0 ≤ k ≤ n, where Nk is a k-dimensional Einstein manifold of positive scalar curvature.
Cao and Chen [7] proved that a Bach-flat gradient shrinking Ricci soliton is either Einstein,
or a finite quotient of Nn−1 × R or Rn , where Nn−1 is an (n − 1)-dimensional Einstein
manifold. Various rigidity results under appropriate curvature pinching assumptions were
proved in [2,11,30,31], etc.

In particular, in dimension 4, by the duality decomposition, it is natural to consider half
curvature tensor. As is well-known, a Riemannian metric with δW± = 0 is, among others,
another interesting extension of an Einstein metric on a four-manifold [1], see for example
Gursky [20] for an interesting gap theorem for ‖W±‖L2 . Chen and Wang [14] (see also
Cao and Chen [7]) proved that a half conformally flat (W± = 0) four-dimensional gradient
shrinkingRicci soliton is a finite quotient of S4,CP2, S3×R, orR4. In [44], the second author
observed that a compact four-dimensional gradient shrinking Ricci soliton with δW± = 0
and half nonnegative isotropic curvature is a finite quotient of S4 or a Kähler–Einstein four-
manifold.

In this paper we classify four-dimensional gradient shrinking Ricci solitons with harmonic
half Weyl curvature,

Theorem 1.1 A four-dimensional gradient shrinking Ricci soliton with δW± = 0 is either
Einstein, or a finite quotient of S3 × R, S2 × R

2, or R4.

Observe that on a four-manifold any Kähler metric with constant scalar curvature satisfies

δW+ = 0 and |W+|2
R2 = 1

24 automatically (see [15]), therefore we show

Theorem 1.2 A four-dimensional gradient Kähler–Ricci soliton with constant scalar curva-
ture is either Kähler–Einstein, or a finite quotient of M ×C, where M is a Riemann surface.
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Recently, Fernández-López and García-Río [19] proved Theorem 1.2 using a different
method, moreover they were able to classify six-dimensional gradient Kähler–Ricci soli-
tons with constant scalar curvature.

Su and Zhang [40] proved that a complete noncompact gradient Kähler–Ricci soliton with
vanishingBochner tensor isKähler–Einstein. Chen andZhu [13] proved that a gradient steady
Kähler–Ricci soliton with harmonic Bochner tensor is Calabi–Yau, and a gradient shrinking
(expanding) Kähler–Ricci soliton with harmonic Bochner tensor is either Kähler–Einstein, or
a finite quotient of Nk ×C

n−k , where Nk is a Kähler–Einstein manifold of positive (negative)
scalar curvature. Calamai and Petrecca [3] proved that an extremal Kähler–Ricci soliton with
positive holomorphic sectional curvature is Kähler–Einstein.

Consequently we observe that the Kato inequality enables one to remove the nonnegative
Ricci curvature assumption in Theorem 1.1 of Catino [11].

Theorem 1.3 (Catino [11]) A gradient shrinking Ricci soliton with

|W |R ≤
√
2(n − 1)

n − 2

( ◦
Ric − R√

n(n − 1)

)2

is a finite quotient of Sn, Sn−1 × R, or Rn.

Catino’s method was to prove that |Ric|2
R2 is h-subharmonic (h = f − 2 ln R) under the Weyl

curvature pinching condition, and he assumed Ric ≥ 0 to ensure that |Ric|2
R2 is L2

h-integrable,

then he applied a weighted maximum principle. We observe that |Ric|
R is automatically L2

h-
integrable by a result of Munteanu and Sesum [29], and by the Kato inequality |∇Ric|2 ≥
|∇|Ric||2, Catino’s method shows that |Ric|

R is also h-subharmonic.

Remark 1.1 It is interesting to point out that the method of our proof is new, and is different
from casesmentioned above. For example for gradient shrinking Ricci solitons with δW = 0,
the proofs of Fernández-López and García-Río [18], and Munteanu and Sesum [29] rely on
the following identity. If the Ricci curvature is bounded below and |Rm| ≤ ea(r+1) for some
a ∈ R [9], or if

∫
M |Rm|2e−δ f < ∞ for some δ < 1 [29], then∫

M
|δRm|2e− f =

∫
M

|∇Ric|2e− f .

Unfortunately, it is not clear whether there is an analogue identity for half curvature tensor.

Themethod to prove Theorem 1.1 ismotivated by previouswork on the rigidity of Einstein
four-manifolds by Gursky and LeBrun [21], Yang [45], and the second named author [43,
44], where the Weitzenböck formula plays a key role. The main ingredients are curvature
decompostions and the Weitzenböck formula for half Weyl curvature [44]. First we show,
using the curvature decomposition, that if δW± = 0 then ∇ f is an eigenvector of the Ricci
tensor, and observe that W± can be expressed explicitly in terms of the traceless Ricci
curvature. Next applying theWeitzenböck formula and the weighted maximum principle, we
prove an identity involving the (anti-)self-dual Weyl curvature, the traceless Ricci curvature
and the scalar curvature, which further implies that either f ≡const, hence (M, g) is an
Einstein manifold; or W± ≡ 0, hence (M, g) is a finite quotient of S3 × R or R4; or
R ≡const and 0 ≤ Ric ≤ λg, hence (M, g) is a finite quotient of S2 × R

2.
The rest of the paper is organized as follows. In sect. 2, we discuss curvature decompo-

sitions and the relationship between W± and the traceless Ricci curvature when δW± = 0.
In sect. 3, we prove Theorems 1.1 and 1.2 by applying the Weitzenböck formula and the
Yau–Naber maximum principle.
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2 Curvature decompositions on four-dimensional gradient Ricci
solitons

In this section we will discuss curvature decompositions on four-dimensional gradient Ricci
solitons. First we fix some notation. Our sign conventions for the curvature tensor will be so
that

Ri jkl = ghk R
h
i jl , K (ei , e j ) = Ri ji j , Rik = g jl Ri jkl , R = gi j Ri j .

And our convention for the inner product of two (0, 4)-tensors S, T will be

〈S, T 〉 = 1

4
Si jkl T

i jkl

so that our convention agrees with the one in Derdzinski’s Weitzenböck formula [15].
On an oriented 4-manifold, the Hodge star � : ∧2M → ∧2M has eigenvalues 1 and −1.

Thus we can break ∧2M = ∧+M + ∧−M according to the eigenspaces of �. Given a basis
{e1, e2, e3, e4} of TpM , for any pair (i j), 1 ≤ i �= j ≤ 4, denote (i ′ j ′) to be the dual of (i j),
i.e., the pair such that ei ∧ e j ± ei ′ ∧ e j ′ ∈ ∧±M . In other words, (i j i ′ j ′) = σ(1234) for
some even permutation σ ∈ S4. So for any (0, 4)-tensor T , its (anti-)self-dual part is

T±
i jkl = 1

4
(Ti jkl ± Ti jk′l ′ ± Ti ′ j ′kl + Ti ′ j ′k′l ′),

It is well known that for four-manifolds, Weyl curvature has a very interesting symmetry,

Lemma 2.1 Let (M, g) be a four-dimensional Riemannian manifold. Then

Wi jkl =Wi ′ j ′k′l ′ ,

therefore,

W±
i jkl = ± W±

i jk′l ′ = ±W±
i ′ j ′kl = W±

i ′ j ′k′l ′ = 1

2
(Wi jkl±Wi jk′l ′).

In particular, for any u ∈ C∞(M),

|ι∇uW
±|2 =1

4
|W±|2|∇u|2.

Now we discuss curvature decompositions on four-dimensional gradient Ricci solitons.
First we recall some basic identities,

Lemma 2.2 Let (M, g, f ) be a gradient Ricci soliton. Then

∇k R jl − ∇l R jk =Ri jkl∇ i f ,

(δRm) jkl = ∇ i Ri jkl =Ri jkl∇ i f ,

∇i R = 2∇ j Ri j =2Ri j∇ j f .

In [6,7], Cao and Chen introduced a (0, 3)-tensor D = n−2
n−3δW − ι∇ f W , which plays an

important role in their classification of locally conformally flat gradient steady Ricci solitons
and Bach-flat gradient shrinking Ricci solitons. We observe that D and its “self-dual” and
“anti-self-dual” parts D±, arise naturally from the standard curvature decomposition. For our
purpose we only calculate the four-dimensional case, for general dimensions the argument
is the same.
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Lemma 2.3 Let (M, g, f ) be a four-dimensional gradient Ricci soliton. Then

D jkl = 2∇ iWi jkl − Wi jkl∇ i f

= 1

2
(R jl∇k f − R jk∇l f ) + 1

12
(∇k Rg jl − ∇l Rg jk) − R

6
(g jl∇k f − g jk∇l f ),

D±
jkl

�= 2∇ iW±
i jkl − W±

i jkl∇ i f

= 1

4
(R jl∇k f − R jk∇l f ) + 1

24
(∇k Rg jl − ∇l Rg jk)

− R

12
(g jl∇k f − g jk∇l f )

± 1

4
(R jl ′∇k′ f − R jk′∇l ′ f ) ± 1

24
(∇k′ Rg jl ′ − ∇l ′ Rg jk′)

∓ R

12
(g jl ′∇k′ f − g jk′∇l ′ f ).

In particular,

|D+|2 = |D−|2 = 1

2
|D|2 =1

4
| ◦
Rc|2|∇ f |2 − 1

48
|R∇ f − 2∇R|2. (2)

Proof We apply the standard curvature decomposition to both sides of the identity∇ i Ri jkl =
Ri jkl∇ i f ,

For the left hand side, we have

∇ i Ri jkl = ∇ iWi jkl + 1

2
∇ i (Rikg jl + R jl gik − Ril g jk − R jkgil)

− ∇ i R

6
(gikg jl − gil g jk)

= ∇ iWi jkl + 1

2
(∇k R jl − ∇l R jk + 1

2
∇k Rg jl − 1

2
∇l Rg jk)

− 1

6
(∇k Rg jl − ∇l Rg jk)

= ∇ iWi jkl + 1

2
∇ i Ri jkl + 1

4
(∇k Rg jl − ∇l Rg jk) − 1

6
(∇k Rg jl − ∇l Rg jk),

Therefore we get

∇ i Ri jkl =2∇ iWi jkl + 1

6
(∇k Rg jl − ∇l Rg jk),

On the other hand, observe that by the second Bianchi identity, we have ∇ i Ri ′ j ′kl = 0, so
we get

4∇ i R±
i jkl = ∇ i (Ri jkl + Ri jk′l ′ + Ri ′ j ′kl + Ri ′ j ′k′l ′)

= ∇ i (Ri jkl + Ri jk′l ′)

= 2∇ i (Wi jkl + Wi jk′l ′) + 1

6
(∇k Rg jl − ∇l Rg jk) + 1

6
(∇k′ Rg jl ′ − ∇l ′ Rg jk′)

= 4∇ iW±
i jkl + 1

6
(∇k Rg jl − ∇l Rg jk) + 1

6
(∇k′ Rg jl ′ − ∇l ′ Rg jk′),
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therefore we obtain

Ri jkl∇ i f + Ri jk′l ′∇ i f = 4∇ iW±
i jkl + 1

6
(∇k Rg jl − ∇l Rg jk)

+ rac16(∇k′ Rg jl ′ − ∇l ′ Rg jk′)
(3)

For the right hand side, we have

Ri jkl∇ i f = Wi jkl∇ i f + 1

2
(Rikg jl + R jl gik − Ril g jk − R jkgil)∇ i f

− R

6
(gikg jl − gil g jk)∇ i f

= Wi jkl∇ i f + 1

2
(R jl∇k f − R jk∇l f + 1

2
∇k Rg jl − 1

2
∇l Rg jk)

− R

6
(g jl∇k f − g jk∇l f ).

Taking the difference, we get

Djkl = 2∇ iWi jkl − Wi jkl∇ i f

= 1

2
(R jl∇k f − R jk∇l f ) + 1

12
(∇k Rg jl − ∇l Rg jk) − R

6
(g jl∇k f − g jk∇l f ),

Therefore

D±
jkl = 2∇ iW±

i jkl − W±
i jkl∇ i f

= 1

2
[(2∇ iWi jkl − Wi jkl∇ i f ) ± (2∇ iWi jk′l ′ − Wi jk′l ′∇ i f )]

= 1

4
(R jl∇k f − R jk∇l f ) + 1

24
(∇k Rg jl − ∇l Rg jk) − R

12
(g jl∇k f − g jk∇l f )

± 1

4
(R jl ′∇k′ f − R jk′∇l ′ f ) ± 1

24
(∇k′ Rg jl ′ − ∇l ′ Rg jk′)

∓ R

12
(g jl ′∇k′ f − g jk′∇l ′ f ),

��
Fernández-López and García-Río [18] proved that if a gradient Ricci soliton satisfies

δW = 0, then ∇ f is an eigenvector of the Ricci tensor. Following from Lemma 2.3, it is
easy to see that in dimension four, δW± = 0 provides the same information,

Lemma 2.4 Let (M, g, f ) be a four-dimensional gradient Ricci soliton. If δW± = 0, then
∇ f , whenever nonzero, is an eigenvector of the Ricci tensor.

Proof In Eq. (3), if δW± = 0, then

Ri jkl∇ i f + Ri jk′l ′∇ i f =1

6
(∇k Rg jl − ∇l Rg jk) + 1

6
(∇k′ Rg jl ′ − ∇l ′ Rg jk′)

Let e1 = ∇ f
|∇ f | , and extend it to an orthonormal basis {e1, e2, e3, e4} of TpM . Let j = k =

1, l �= 1, then since (klk′l ′) = σ(1234), we have g jl = g jk′ = g jl ′ = 0. Therefore we get

0 =∇l R = 2Rl j∇ j f = 2|∇ f |R1l .

��
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Combining Lemmas 2.3 and 2.4, we make a key observation that if δW± = 0, then W±
has a nice expression in terms of Ricci curvature and scalar curvature.

Proposition 2.1 Let (M, g, f ) be a four-dimensional gradient Ricci soliton with δW± = 0.
Denote a1, a2, a3, a4 be the eigenvalues of the traceless Ricci tensor with corresponding
eigenvectors e1 = ∇ f

|∇ f | , e2, e3, e4. Then whenever ∇ f �= 0,

b1
�= W±

1212 = − 1

12
(a1 + 3a2) = 1

12
(a3 + a4 − 2a2),

b2
�= W±

1313 = − 1

12
(a1 + 3a3) = 1

12
(a2 + a4 − 2a3),

b3
�= W±

1414 = − 1

12
(a1 + 3a4) = 1

12
(a2 + a3 − 2a4),

W±
1 j1l = 0, if j �= l.

Proof By Lemma 2.4 we have R1 j = 0 for j �= 1, which gives us

∇1R = 2R1 j∇ j f = 2R11|∇ f |.
If δW± = 0, then

−W±
1 j1 j |∇ f | = −W±

i j1 j∇ i f

= 1

4
(R j j∇1 f − R1 j∇ j f ) + 1

24
(∇1Rg j j − ∇ j Rg1 j )

− R

12
(g j j∇1 f − g1 j∇ j f )

± 1

4
(R j j ′∇1′ f − R j1′∇ j ′ f ) ± 1

24
(∇1′ Rg j j ′ − ∇ j ′ Rg j1′)

∓ R

12
(g j j ′∇1′ f − g j1′∇ j ′ f )

= 1

4
R j j |∇ f | + 1

12
R11|∇ f | − R

12
|∇ f |.

If ∇ f �= 0, then we get

−W±
1212 = 1

4
R22 + 1

12
R11 − R

12

= 1

12

[
3

(
R22 − R

4

)
+

(
R11 − R

4

)]

= 1

12
(a1 + 3a2),

similarly we get W±
1313 and W±

1414.
If j �= l, then it is easy to compute that W±

1 j1l = 0. ��

3 Proof of Theorem 1.1

First recall the Weitzenböck formula for the half Weyl curvature W±, which was proved by
the second named author in [44],
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Proposition 3.1 ([44]) Let (M, g, f ) be a four-dimensional gradient Ricci soliton. Then

� f |W±|2 =2|∇W±|2 + 4λ|W±|2 − 36 detW± − 〈( ◦
Ric ◦ ◦

Ric)±,W±〉.
Next we compute,

Proposition 3.2 Let (M, g, f ) be a four-dimensional gradient Ricci soliton. Let h = f −
ln R2, then

�h

( |W±|
R

)
≥ 1

2|W±|R2

(
R2|W±|2 − 36R detW± + 4|W±|2| ◦

Ric|2

− R〈( ◦
Ric ◦ ◦

Ric)±,W±〉
)
.

(4)

Proof Recall the Kato inequality |∇T |2 ≥ |∇|T ||2 for any tensor T . From Proposition 3.1,
we get

� f |W±| = 1

2|W±|
[
2|∇W±|2 − 2|∇|W±||2 + 4λ|W±|2 − 36 detW±

− 〈( ◦
Ric ◦ ◦

Ric)±,W±〉
]

≥ 1

2|W±|
[
4λ|W±|2 − 36 detW± − 〈( ◦

Ric ◦ ◦
Ric)±,W±〉

]

and recall that
� f R =2λR − 2|Ric|2. (5)

Therefore we compute

� f

( |W±|
R

)
= � f |W±|

R
− |W±|� f R

R2 − 2
∇|W±|∇R

R2 + 2
|W±||∇R|2

R3

≥ 1

2R|W±| (4λ|W±|2 − 36 detW± − 〈( ◦
Ric ◦ ◦

Ric)±,W±〉)

− |W±|
R2 (2λR − 2|Ric|2)

− 2
∇|W±|∇R

R2 + 2
|W±||∇R|2

R3

= −2
1

R

〈
∇

( |W±|
R

)
,∇R

〉
+ 1

2|W±|R2

(
4|W±|2|Ric|2

− 36R detW± − R〈( ◦
Ric ◦ ◦

Ric)±,W±〉
)

= −
〈
∇

( |W±|
R

)
,∇ ln R2

〉
+ 1

2|W±|R2

(
R2|W±|2

− 36R detW± + 4|W±|2| ◦
Ric|2 − R〈( ◦

Ric ◦ ◦
Ric)±,W±〉

)
.

��
We have,

Lemma 3.1 Let (M, g, f ) be a four-dimensional gradient shrinking Ricci soliton with
δW± = 0, then whenever ∇ f �= 0,

R2|W±|2 − 36R detW± + 4|W±|2| ◦
Ric|2 − R〈( ◦

Ric ◦ ◦
Ric)±,W±〉 ≥ 0,
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Denote a1, a2, a3, a4 be eigenvalues of
◦

Ric with corresponding orthonormal eigenvectors
e1 = ∇ f

|∇ f | , e2, e3, e4. The equality holds if and only if, either
(1). a2 = a3 = a4, i.e., W± = 0; or
(2). after a rearrangement of {e2, e3, e4}, a1 = a2 = −a, a3 = a4 = a, and R = 4a for

some a > 0.

Remark 3.1 Lemma 3.1 also works for gradient steady and expanding solitons, and the sign
of a in the second equality case changes correspondingly.

The proof of Lemma3.1will be presented at the end of this section.Wefirst proveTheorem
1.1.

Proof of Theorem 1.1. Chen [12] proved that any gradient shrinking Ricci soliton has R ≥ 0.
Moreover, either R > 0 on M , or R ≡ 0 on M , and if R ≡ 0 then (M, g) is a finite quotient
of R4, see [38,39]. From now on we assume R > 0.

If M is compact, then from Proposition 3.2,

0 =
∫
M

�h

( |W±|
R

)
e−hdv

≥
∫
M

1

2|W±|
(
R2|W±|2 − 36R detW± + 4|W±|2| ◦

Ric|2

− R〈( ◦
Ric ◦ ◦

Ric)±,W±〉
)
e− f dv

so by Lemma 3.1 we get

R2|W±|2 − 36R detW± + 4|W±|2| ◦
Ric|2 − R〈( ◦

Ric ◦ ◦
Ric)±,W±〉 ≡ 0. (6)

If M is noncompact, by Eq. (2) in Lemma 2.3 and the last equality in Lemma 2.1, if
δW± = 0, then

|W±| ≤ | ◦
Ric| < |Ric|,

Munteanu and Sesum [29] proved that for a gradient shrinking Ricci soliton,
∫
M

|Ric|2e−δ f dv < ∞,

for any δ > 0. Therefore if δW± = 0, then

∥∥∥ |W±|
R

∥∥∥
L2
h(M)

=
∫
M

|W±|2e− f dv < ∞.

By a maximum principle of Naber [31] and Petersen and Wylie [37], if
∫
M e−hdv < ∞,

then any L2
h-integrable h-subharmonic function is constant, therefore we conclude that |W±|

R
is constant, which also implies Eq. (6).

Recall that any gradient Ricci soliton is a real-analytic manifold (see [26] or [28]), hence
all |∇ f |2, |W±|2, and R are analytic functions on M , therefore either ∇ f ≡ 0 or W± ≡ 0,
or the second equality case in Lemma 3.1 holds on M .

Case 1. If ∇ f ≡ 0 on M ,then (M, g) is Einstein.
Case 2. If W± ≡ 0 on M , then (M, g) is a finite quotient of S3 × R or R4 by [14].
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Case 3. If ∇ f �≡ 0 and W± �≡ 0, then the second case in Lemma 3.1 holds in an open
dense set S of M . Without loss of generality, assume δW+ = 0. First it is easy to see that

R11 = ◦
R11 + R

4
= 0, R22 = 0, R33 = R44 = 2a,

therefore by Lemma 2.4, ∇R = ∇1Re1 = 2R11|∇ f |e1 = 0, that is R ≡const on S. By
the continuity of R, we have R ≡const on M . Furthermore, since the eigenvalues of Ricci
curvature are 0, 0, 2a, 2a, so we have |Ric|2 = 8a2, plugging into Eq. (5), we get

0 = � f R = 2λR − 2|Ric|2
= 8λa − 16a2,

therefore a = λ
2 , which in particular implies that 0 ≤ Ric ≤ λg. By Proposition 1.3 in [38],

(M, g, f ) is rigid, i.e., it is a finite quotient of Nk ×R
4−k , where Nk is an Einstein manifold.

Since (M, g, f ) is neither Einstein nor half conformally flat, we conclude that (M, g) is a
finite quotient of S2 × R

2. ��

Proof of Theorem 1.2. On a four-manifold, a Kähler metric with constant scalar curvature
satisfies

δW+ = 0,
|W+|2
R2 = 1

24
.

If (M, g, f ) is a gradient shrinking Ricci soliton, it follows directly from Case 3 of the
proof of Theorem 1.1.

If (M, g, f ) is a gradient expanding Ricci soliton, then by Proposition 3.2 and Lemma
3.1 we have

R2|W+|2 − 36R detW+ + 4|W+|2| ◦
Ric|2 − R〈( ◦

Ric ◦ ◦
Ric)+,W+〉 ≡ 0.

Similar to the proof of Theorem 1.1, there are three cases,
Case 1. If ∇ f ≡ 0 on M , then (M, g) is Kähler–Einstein.
Case 2. If W+ ≡ 0 on M , then D+ ≡ 0, hence by Lemma 2.3, D ≡ 0, therefore W ≡ 0

by Theorem 5.1 in Cao and Chen [7], and (M, g, f ) is a finite quotient of Gaussian expanding
soliton by Su and Zhang [40].

Case 3. If ∇ f �≡ 0 andW+ �≡ 0, then it follows from Case 3 in the proof of Theorem 1.1
that it is rigid, hence a finite quotient of M × C, where M is a Riemann surface of constant
negative curvature.

��
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Proof of Lemma 3.1. By proposition 2.1, we express each term in terms of eigenvalues of
traceless Ricci tensor,

| ◦
Rc|2 = a21 + a22 + a23 + a24

= 2
(
a22 + a23 + a24 + a2a3 + a2a4 + a3a4

)
,

|W±|2 = 4(b21 + b22 + b23)

= 1

6

(
a22 + a23 + a24 − a2a3 − a2a4 − a3a4

)

36 detW± = 1

6

(
a3 + a4 − 2a2

)(
a2 + a4 − 2a3

)(
a2 + a3 − 2a4)

= 1

6

( − 2a32 − 2a33 − 2a34 + 3a22a3 + 3a23a2 + 3a22a4

+ 3a24a2 + 3a23a4 + 3a24a3 − 12a2a3a4
)
,

〈( ◦
Rc ◦ ◦

Rc)±,W±〉 = W±
i j i j

◦
Rii

◦
R j j

= 2
[
b1

(
a1a2 + a3a4

) + b2
(
a1a3 + a2a4

) + b3
(
a1a4 + a2a3

)]
= 1

6

(
2a32 + 2a33 + 2a34 + a22a3 + a23a2 + a22a4

+ a24a2 + a23a4 + a24a3 − 12a2a3a4
)
.

Therefore we get

6φ = 6(R2|W±|2 − 36R detW± + 4|W±|2| ◦
Ric|2 − R〈( ◦

Ric ◦ ◦
Ric)±,W±〉)

= R2(a22 + a23 + a24 − a2a3 − a2a4 − a3a4
)

− 4R
(
a22a3 + a23a2 + a22a4 + a24a2 + a23a4 + a24a3 − 6a2a3a4

)
+ 8

(
a22 + a23 + a24 + a2a3 + a2a4 + a3a4

)×(
a22 + a23 + a24 − a2a3 − a2a4 − a3a4

)
.

(7)

By abusing the noataion, we identify φ and 6φ. Observe that φ is a fourth-order homogeneous
symmetric polynomial of a2, a3, a4 if we rewrite R = k(a2 + a3 + a4) for some k ∈ R.

First we show φ(a2, a3, a4) ≥ 0 using Timofte’s criterion for positivity of homogeneous
symmetric polynomials (see Corollary 5.6 in [41]),

Proposition 3.3 (Timofte [41]) Let p be a fourth-order homogeneous symmetric polynomial
on R

n, then

p ≥ 0 on R
n ⇐⇒ p(t · 1Ri , 1Rn−i ) ≥ 0, ∀ t ∈ [−1, 1], i = 1, 2, . . . , n − 1,

where 1 = (1, 1, . . . , 1).

If a1 �= 0, without of loss of generality, assume R = −ka1 = k(a2 + a3 + a4). In our
case n = 3, so we need to show that

φ(t, 1, 1) ≥ 0, φ(t, t, 1) ≥ 0, ∀ t ∈ [−1, 1].
For φ(t, 1, 1), plugging into equation (7), recall that R = k(t + 2), we get

φ(t, 1, 1) =(t − 1)2
[
k2(t + 2)2 − 8k(t + 2) + 8(t2 + 2t + 3)

]
.
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Consider φ(t, 1, 1) as a quadratic function of k. When −1 ≤ t ≤ 1, the discriminant

D = − 32(t + 2)2(t − 1)4(t + 1)2 ≤ 0,

and D < 0 when −1 < t < 1. Therefore for all −1 ≤ t ≤ 1,

φ(t, 1, 1) ≥ 0,

and φ(t, 1, 1) = 0 if and only if t = 1, or t = −1 and R = 4.
For φ(t, t, 1), since we assume a1 �= 0, so t �= − 1

2 . Plugging into Eq. (7), recall that
R = k(2t + 1), we get

φ(t, t, 1) =(t − 1)2
[
k2(2t + 1)2 − 8kt(2t + 1) + 8(3t2 + 2t + 1)

]
.

Consider φ(t, t, 1) as a quadratic function of k, we see that when −1 ≤ t ≤ 1 and t �= − 1
2 ,

the discriminant
D = − 32(2t + 1)2(t − 1)4(t + 1)2 ≤ 0,

and D < 0 when −1 < t < 1 and t �= − 1
2 . Therefore for all −1 ≤ t ≤ 1 and t �= − 1

2 ,

φ(t, t, 1) ≥ 0,

and φ(t, t, 1) = 0 if and only if t = 1, or t = −1 and R = −4.
If a1 = 0 (which corresponds to t = − 1

2 in φ(t, t, 1)), i.e., a2 + a3 + a4 = 0, then φ can
be simplified as

φ = 3R2(a22 + a23 + a2a3
) − 36Ra2a3(a2 + a3) + 24

(
a22 + a23 + a2a3

)2
.

Consider φ as a quadratic function of R, then its discriminant

D = 362a22a
2
3(a2 + a3)

2 − 36
[
a22 + a23 + (a2 + a3)

2]3 ≤ 0.

Recall a well-known inequality: if a+b+ c = 0, then 3
√
6|abc| ≤ (a2 +b2 + c2)

3
2 , with

equality if and only if a = −2b, or b = −2c, or c = −2a. Since −a2 − a3 + (a2 + a3) = 0,
we have

D = 362a22a
2
3(a2 + a3)

2 − 36
[
a22 + a23 + (a2 + a3)

2]3
≤ 24

[
a22 + a23 + (a2 + a3)

2]3 − 36
[
a22 + a23 + (a2 + a3)

2]3
≤ 0,

with equality if andonly ifa2 = a3 = 0. Soφ ≥ 0, andφ = 0 if andonly ifa2 = a3 = a4 = 0.
Therefore we proved that φ(R, a2, a3, a4) ≥ 0 on R4.
Next we show that when a2 �= a3 �= a4, then φ > 0.
Assume that a2 �= a3 �= a4 and φ(R, a2, a3, a4) = 0. Taking the first derivatives we get,

φa2 = R2(2a2 − a3 − a4) − 4R
(
2a2a3 + 2a2a4 + a23 + a24 − 6a3a4

)

+ 16
(
2a32 + a2a

2
3 + a2a

2
4 − a23a4 − a3a

2
4 − 2a2a3a4

)
= 0,

φa3 = R2(2a3 − a2 − a4) − 4R
(
2a2a3 + 2a3a4 + a22 + a24 − 6a2a4

)

+ 16
(
2a33 + a22a3 + a3a

2
4 − a22a4 − a2a

2
4 − 2a2a3a4

)
= 0,

φa4 = R2(2a4 − a2 − a2) − 4R
(
2a2a4 + 2a3a4 + a22 + a23 − 6a2a3

)

+ 16
(
2a34 + a22a4 + a23a4 − a22a3 − a2a

2
3 − 2a2a3a4

)
= 0.
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Taking the difference, since a2 �= a3 �= a4, we get

0 = φa2 − φa3

a2 − a3
=3R2 − R(4(a2 + a3) − 32a4)

+ 16
(
2a22 + 2a23 + 2a24 + a2a3 + a2a4 + a3a4

)
,

0 = φa2 − φa4

a2 − a4
=3R2 − R(4(a2 + a4) − 32a3)

+ 16
(
2a22 + 2a23 + 2a24 + a2a3 + a2a4 + a3a4

)
,

0 = φa3 − φa4

a3 − a4
=3R2 − R(4(a3 + a4) − 32a2)

+ 16
(
2a22 + 2a23 + 2a24 + a2a3 + a2a4 + a3a4

)
.

Taking the difference again, we get a2 = a3 = a4, contradiction! So φ > 0 when a2 �= a3 �=
a4.

Therefore φ ≥ 0, and by Timofte’s criterion and above argument, φ = 0 if and only if,
either a2 = a3 = a4, i.e. W± = 0;
or a1 = ai = −a, a j = ak = a, 2 ≤ i �= j �= k ≤ 4, and R = 4a, for some a > 0.
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