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Abstract We prove that complete warped product Einstein metrics with isometric
bases, simply connected space formfibers, and the sameRicci curvature and dimension
are isometric. In the compact case we also prove that the warping functions must be
the same up to scaling, while in the non-compact case there are simple examples
showing that the warping function is not unique. These results follow from a structure
theorem for warped product Einstein spaces which is proven by applying the results
in our earlier paper He et al. (Asian J Math 2011) to a vector space of virtual Einstein
warping functions. We also use the structure theorem to study gap phenomena for

Dedicated to Wolfgang T. Meyer on the occasion of his 75th birthday.

Communicated by Eduardo Garcia-Rio.

C. He (B)
Department of Math, Lehigh University, 14 E. Packer Ave,
Christmas-Saucon Hall, Bethlehem, PA 18015, USA
e-mail: che@math.ou.edu
URL: http://sites.google.com/site/hechenxu/

Present Address:
C. He
Department of Math, University of Oklahoma, Norman, OK 73019, USA

P. Petersen
Department of Math, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA
e-mail: petersen@math.ucla.edu
URL: http://www.math.ucla.edu/∼petersen

W. Wylie
Department of Math, Syracuse University, 215 Carnegie Building, Syracuse, NY 13244, USA
e-mail: wwylie@syr.edu
URL: http://wwylie.expressions.syr.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12220-014-9528-8&domain=pdf


2618 C. He et al.

the dimension of the space of warping functions and the isometry group of a warped
product Einstein metric.

Keywords Einstein manifold · Warped product · Uniqueness
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1 Introduction

The study of Einsteinmanifolds is a vast and difficult problem in differential geometry.
A general understanding of all solutions is quite far away, so it is natural to study certain
classes of solutions which are more tractable. In this paper we study Einstein metrics
with a warped product structure. These spaces have also been systematically studied
in, for example, [1,6–9,13]. There are classical examples such as the simply connected
spaces of constant curvature and the Schwarzschild metric, along with more recent
examples constructed in [1–3], and [14].

A warped product metric (E, gE ) is a metric that can be written in the form

(E, gE ) = (M ×w F, gM + w2gF ),

where (M, gM ) is a Riemannian manifold, w is a nonnegative function on M with
w−1(0) = ∂M , and (F, gF ) is a complete m-dimensional Riemannian manifold. A
metric in this form is a λ-Einstein metric, RicE = λgE , if

RicM − m

w
Hessw = λgM (1.1)

RicF = μgF (1.2)

w�w + (m − 1)|∇w|2 + λw2 = μ, (1.3)

where μ is some constant. See [1, p. 9.106].
Proposition 5 in [13] shows that if w is a solution to (1.1) then it also solves (1.3)

for some constant μ. This shows that if w is a positive solution to (1.1) and m > 1,
then there is a warped product Einstein metric with base (M, gM ). When w vanishes
on ∂M , one also always obtains a smooth Einstein metric; see Proposition 1.1 in [8].

Einstein metrics are usually not unique, and there is often a smooth moduli space of
solutions on a fixed manifold. On the other hand, uniqueness is often true if the metric
is also required to be compatible with some additional structure, such as a Kähler
structure [4,5], conformal structure [16], or transitive solvable group of isometries
[12]. In this paper, we prove uniqueness of warped product Einstein metrics when the
base (M, gM ) is fixed.

Theorem 1.1 Let (M, gM ) be a complete Riemannian manifold, and fix constants λ

and m. Then, up to isometry, there is at most one warped product λ-Einstein metric
M×w F, where (Fm, gF ) is a complete simply connected space of constant curvature.

The theorem is optimal, as simple examples show that all of the assumptions are
necessary for uniqueness. There are two trivial ways to construct infinitely many
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Uniqueness of WPE Metrics 2619

warped product Einstein metrics on the same smooth manifold. One is to fix a base
space (M, gM )with no boundary and a functionw > 0 satisfying (1.1) and let (F, gtF )

be an infinite family ofμ-Einsteinmanifolds. In this waywe can see that, whenm > 3,
a positive solution to (1.1) produces an infinite collection of Einstein metrics. To avoid
this ambiguity, we use the convention that (F, gF ) is chosen to be a simply connected
space of constant curvature or a circle, the circle being needed only when ∂M �= ∅.

The other way to produce infinitelymanywarped productmetrics on the same space
is to let gtM be an infinite family of λ-Einstein metrics, let w = 1, and let (F, gF ) be
a fixed λ-Einstein manifold. These examples show that if we change the base metric
gM , it is possible to get many non-isometric warped product Einstein metrics on the
same manifold, even if we fix (F, gF ) to be a simply connected space form.

Examples of product manifolds M × F which support both trivial product Einstein
metrics and non-trivial Einstein warped products are constructed by Böhm on prod-
ucts of spheres [2] and by Lü et al. on (CP2#CP2) × S

m [14]. These examples are
cohomogeneity one which, by Proposition 2.1 in [7], is the most symmetry a non-
trivial compact example can have. In the non-compact case, we also produce many
non-isometric, non-trivial homogeneous warped product Einsteinmanifolds which are
diffeomorphic to Rn+m in [11].

The starting point of the proof of Theorem 1.1 is to study the vector space of
solutions to (1.1). Given λ ∈ R and m ∈ R

+ and fixed (M, g), define the space of
virtual (λ, n + m)-Einstein warping functions as

W = Wλ,n+m (M, g) =
{
w ∈ C∞ (M) : Hessw = w

m
(Ric − λg)

}
. (1.4)

This is clearly a vector space of functions. The constant μ(w),

μ(w) = w�w + (m − 1)|∇w|2 + λw2, (1.5)

then defines a quadratic form on W .
Let m be a positive integer. Then (n + m)-dimensional warped product Einstein

metrics with base (M, g) correspond to non-negative functions in W which have
w−1(0) = ∂M . The choice of space form fiber, (Fm, gF ), is determined by the
requirement that it has Ricci curvature μ(w).

When ∂M �= ∅, by Proposition 1.7 of [10], the sub-space of functions in W satis-
fying Dirichlet boundary condition (w = 0 on ∂M) is at most one dimensional. This
implies Theorem 1.1 when ∂M �= ∅.

When ∂M = ∅, Theorem 1.1 would follow from the uniqueness of positive func-
tions in W . However, a simple example shows that this is not generally true.

Example 1.1 Let M = R and λ < 0. W is the space of functions satisfying

w′′ = − λ

m
w.
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2620 C. He et al.

So

w(t) = C1exp

(√−λ

m
t

)
+ C2exp

(
−

√−λ

m
t

)

and

μ(w) = 4(m − 1)λ

m
C1C2.

Thus we have positive solutions whenever C1,C2 ≥ 0. On the other hand, for every
such w, when (F, gF ) is chosen to be the simply connected space form with Ricci
curvature μ(w), the metric

R ×w Fm

is (m+1)-dimensional hyperbolic spacewithRicci curvatureλ. So the spaces obtained
are all isometric.

In the compact case, as a consequence of the proof, we obtain the uniqueness of
the warping function.

Corollary 1.1 Let M be compact. If there is a positive function in Wλ,n+m(M, g) then
dimWλ,n+m(M, g) = 1.

Corollary 1.1 can also be proven from a maximum principle argument, as if w ∈
Wλ,n+m(M, g) then it satisfies the scalar equation

�w =
(
scal − λn

m

)
w.

If u, v ∈ W with u positive, we then have

�
(v

u

)
= −2u−1g

(
∇

(v

u

)
,∇u

)
.

The strong maximum principle then implies that v
u is constant when M is compact.

Our geometric methods also produce an optimal uniqueness theorem in the non-
compact case when m > 1, which states that the warping function is unique up to
isometry and the value of the quadratic form μ.

Theorem 1.2 Suppose (M, g) is a complete Riemannian manifold and w1 and w2
are functions in Wλ,n+m(M, g) for some m > 1. If μ(w1) = μ(w2) then there is an
isometry φ of (M, gM ) and a constant C, such that

w2 = C (w1 ◦ φ) .
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Uniqueness of WPE Metrics 2621

Theorem 1.1 and its corollaries are an application of Theorem 2.2, which is a
structure theorem for spaces with dimWλ,n+m(M, g) > 1. The structure theorem
essentially says that every simply connected, complete Riemannian manifold (M, g)
with dimW (M) > 1 must split as a warped product with fiber of constant curvature
and base, B, having W (B) one dimensional. This is an application of the results in
[10], where it is shown that much of this structure holds in much more generality.

In the next section we discuss Theorem 2.2 and show how the uniqueness theorem
follows from it. In Sect. 3 we prove Theorem 2.2 and also Theorem 2.3, which is
a construction showing the structure theorem is optimal. In Sect. 4 we prove gap
theorems for spaces with large W , for example, showing that the case dimW = n
does not occur. In Sect. 5 we study the isometry group of the metrics in the structure
theorem which leads to Theorem 1.2. We further exploit the structure of the isometry
group to study homogeneous warped product Einstein metrics in [11].

There are also two Appendices. In the first Appendix we compute the spaceW (M)

for a general warped product; parts of this computation are used in a few places in
the proof of Theorem 2.2. In the second Appendix we discuss some more elementary
details about the quadratic form μ in the special case m = 1.

2 Rigidity of Metrics with More Than One Einstein Warping Function

In [10] we studied the space of functions

W (M; q) = {w : Hessw = wq}, (2.1)

where q is any smoothly varying quadratic form on the tangent space of M . Virtual
solutions to the warped product Einstein equation (1.4) are of this form with

q = 1

m
(Ric − λg) . (2.2)

For Einstein warping functions, we also have the quadratic form μ (1.5), which,
using the trace of (1.1),

�w = w

m
(scal − nλ) ,

can also be written as

μ(w) = w�w + (m − 1)|∇w|2 + λw2

= (m − 1)|∇w|2 + scal − (n − m)λ

m
w2.

Given p, the quadratic form can then be localized to a quadratic form on R × TpM
given by

μp(α, v) = (m − 1)|v|2 + scal − (n − m)λ

m
α2.

123



2622 C. He et al.

This shows that,whenm > 1,μmust either bepositive definite (elliptic), degenerate
with nullity 1 (parabolic), or nondegenerate with index 1 (hyperbolic). This is clarified
by the following example.

Example 2.1 Let (Mn, g), n > 1, be simply connected with constant curvature κ . If
κ = λ

n+m−1 , then

dimWλ,n+m(M, g) = n + 1,

where

• μ is elliptic if M = S
n ⊂ R

n+1 and Wλ,n+m(M, g) = span{xi |Sn };
• μ is parabolic if M = R

n and Wλ,n+m(M, g) = span{1, xi };
• μ is hyperbolic if M = Hn ⊂ R

n,1 and Wλ,n+m(M, g) = span{xi |Hn }.
When the curvature κ �= λ

n+m−1 then Wλ,n+m(M, g) is either trivial or contains only
constant functions.

Remark 2.1 The properties of the quadratic form μ are different when m = 1. In this
case either dimWλ,n+m(M, g) = 1, or μ = 0 on all functions in Wλ,n+m(M, g). See
Appendix 2.

We also note that, from Obata’s theorem, the sphere is unique among compact
Einstein metrics with dimWλ,n+m(M, g) large.1

Proposition 2.1 If (M, g) is a compact Einstein metric with Ric = cg, which is not
the round sphere, then

dimWλ,n+m(M, g) =
{
0 if λ �= c
1 if λ = c.

Proof For an Einstein metric w ∈ Wλ,n+m(M, g) becomes

Hessw = λ − c

m
w.

If λ−c < 0 Obata’s theorem implies that (M, g) is isometric to the sphere. Otherwise,
we have

div(w∇w) = |∇w|2 + w�w = |∇w|2 + n(λ − c)

m
w2 ≥ 0.

By the divergence theorem, w must be constant, and w �= 0 only if c = λ. �

The first important result from [10] relating the functions in Wλ,n+m(M, g) to the

geometry of the manifold is the following.

1 We thank the referee for pointing out this simple proof to us.
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Theorem 2.1 Let (Mn, g) be a Riemannian manifold. For any p ∈ M, the evaluation
map

(
Wλ,n+m (M, g) , μ

) → (
R × TpM, μp

)
,

w �→ (
w (p) ,∇w|p

)

is an injective isometry with respect to the quadratic forms μ and μp. Moreover, there
is an injective homomorphism

∧2Wλ,n+m(M, g) → iso(M, g)

v ∧ w → v∇w − w∇v

whose image forms a Lie subalgebra of iso(M, g).

Proof The first part is Proposition 1.1 from [10] with the extra observation that the
evaluation map preserves the forms. Lemma 3.1 of [10] shows that

g(∇X (v∇w − w∇v),Y ) = (dv ∧ dw)(X,Y ).

Showing that ∇·(v∇w − w∇v) is anti-symmetric, so that v∇w − w∇v is a Killing
vector field. The injectivity of the map

v ∧ w → v∇w − w∇v

follows from the injectivity of the evaluation map by linear algebra.
Whenm > 1, we can view this second map as a Lie algebra homomorphism where

∧2Wλ,n+m(M, g) is endowed with a natural Lie algebra structure coming from the
quadratic form μ; see Sect. 8.2 of [10]. In full generality, Corollary 3.7 of [10] shows
that the Killing vector fields v∇w−w∇v span an integrable distribution and therefore
form a Lie subalgebra of iso(M, g) even when m = 1. �


As a corollary, we get the following characterization when Wλ,n+m(M, g) has
maximal dimension.

Corollary 2.1 Let (Mn, g) be a complete Riemannian manifold. Then

dimWλ,n+m (M, g) ≤ n + 1.

Moreover, dimWλ,n+m (M, g) = n + 1 if and only if M is either a simply connected
space of constant curvature or a circle.

Remark 2.2 In Corollary 4.1 we also show that the case dimWλ,n+m(M, g) = n does
not occur.

Proof Since we have a linear injection fromWλ,n+m(M, g) into a space of dimension
n + 1, dimWλ,n+m(M, g) ≤ n + 1.
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2624 C. He et al.

In the case dimWλ,n+m(M, g) = n + 1, the injection into iso(M, g) shows that
the isometry group of M has maximal dimension 1

2n(n + 1), which implies that M is
either a simply connected space form, a circle, or a real projective space.

Proposition 2.1 shows that the real projective space does not have dimWλ,n+m

(M, g) > 1. Example 2.1 shows that the simply connected spaces of constant curvature
do occur. The solutions onS1 also can occurwhenλ > 0, as they correspond to periodic
solutions to w′′ = λ

mw on the real line, that is,

w = C1 cos
(√ λ

m
t
) + C2 sin

(√ λ

m
t
)
.

�

The Killing vector fields v∇w − w∇v are also the starting point for proving the

structure theoremwhen 1 < dimWλ,n+m(M, g) < n+1. In this case, we get a warped
product splitting with fiber a space formwhose tangent space is spanned by the Killing
vector fields. In the case of warped product Einstein metrics, this leads to following
structure.

Theorem 2.2 Let (M, g) be a complete, simply connected Riemannian manifold with
dimWλ,n+m(M, g) = k + 1. Then

M = Bb ×u Fk,

where

(1) B is a manifold, possibly with boundary, and u is a nonnegative function in
Wλ,b+(k+m)(B, gB) with u−1(0) = ∂B,

(2) u spans Wλ,b+(k+m)(B, gB), and
(3) Fk is a space form with dimWμB (u),k+m(F, gF ) = k + 1, where μB denotes the

quadratic form on Wλ,b+(k+m)(B, gB).

Moreover,

(4) Wλ,n+m(M, g) = {uv : v ∈ WμB (u),k+m(F, gF )}.
Remark 2.3 In the non-simply connected case, we obtain a warped product splitting
on the universal cover of M . From Proposition 6.5 of [10] we also get a warped
product splitting on M , unless F is R and μB(u) > 0. This second case does occur
when WμB (u),k+m(F, gF ) is a span of sine and cosine functions. On the other hand,
if Wλ,n+m(M, g) contains a positive function, we always obtain a warped product
structure

M = (B/�) ×u Fk,

where � = π1(M). This splitting will also satisfy (1)–(4) with B replaced by B/�.

We now show how the uniqueness theorem follows from this theorem.
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Proof of Theorem 1.1 If dimWλ,n+m(M, g) = 1 the uniqueness of the warped prod-
uct Einstein metric follows from the uniqueness of the warping function. By Propo-
sition 1.7 of [10] this proves the theorem when ∂M �= ∅. The only other case
to consider is when ∂M = ∅, Wλ,n+m(M, g) contains a positive function and
dimWλ,n+m(M, g) > 1.

Let E1 = M ×w1 Fm
1 and E2 = M ×w2 Fm

2 be two λ-Einstein metrics with Fm
i

simply connected space forms andwhereM satisfies the conditions listed above. From
Theorem 2.2 and Remark 2.3 we have

Ei = M ×wi F
m
i = (B ×u F̄k) ×uvi F

m
i = B ×u

(
F̄k ×vi F

m
i

)
,

where F̄k is another simply connected space form.
Applying (1.2) to this last splitting shows that F̄k ×vi F

m
i is Einstein. Moreover,

by (1.3), the Ricci curvature of F̄k ×vi F
m
i is μB(u), so F̄k ×v1 F

m
1 and F̄k ×v2 Fm

2
are isometric; see [10, Lemma 7.1].

Since isometries of fibers of a warped product lift to isometries of the total space
(see Lemma 5.1), this shows there is an isometry between M ×w1 F

m
1 and M ×w2 F

m
2

for such w1,2. �

This also gives us the stronger result in the compact case.

Proof of Corollary 1.1 Suppose that M is compact, has a positive function in
Wλ,n+m(M, g), and has dimWλ,n+m(M, g) > 1. By Theorem 1 of [13], λ must be
positive. Let M̃ be the universal cover of M . Functions in Wλ,n+m(M, g) lift to func-
tions in Wλ,n+m(M̃, g̃), so we also have dimWλ,n+m(M̃, g̃) > 1. Then, by Theorem
2.2,

M̃ = B ×u F̄k .

Since λ is positive, by Theorem 5 of [17], M̃ is also compact. This implies that F̄k must
be Sk . However, on Sk all solutions vanish somewhere. Since w = uv this contradicts
the existence of a positive function in Wλ,n+m(M, g). �


The only conclusion in Theorem 2.2 that does not generalize to solutions to (2.1)
is property (2) as Example 5.2 of [10] shows. This property was not important for
proving the uniqueness theorem, but it is extremely important for other geometric
applications, for example the results in Sects. 4 and 5. For this reason we give the
following definitions.

Definition 2.1 Let (Bb, gB) be a Riemannian manifold possibly with boundary and
let u be a nonnegative function on B with u−1(0) = ∂B. Then (B, gB, u) is called a
(λ, k + m)-base manifold if

(
Wλ,b+(k+m)(B, gB)

)
D = span {u}, where WD denotes

solutions satisfying Dirichlet boundary conditions. It is an irreducible base manifold
if Wλ,b+(k+m)(B, gB) = span {u} with no boundary conditions imposed.

Remark 2.4 When ∂B = ∅, every base manifold is irreducible. When ∂B �= ∅ there
are base manifolds which are not irreducible; see Examples 1.11 and 1.12 in [10].
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Property (2) of Theorem 2.2 is equivalent to saying that (B, gB, u) is an irreducible
base manifold. On the other hand, Theorem 2.2 is an optimal structure theorem in the
sense that every irreducible base manifold produces an example.

Theorem 2.3 Given an irreducible (λ, k + m)-base manifold (B, gB, u) there is a
complete metric of the form

M = Bb ×u Fk

such that dimWλ,(b+k)+m(M, gM ) = k + 1.

Remark 2.5 If ∂B = ∅, μB(u) > 0, and k = 1 there are two such metrics corre-
sponding to the choice F = R or F = S

1. Otherwise, the warped product over B with
dimWλ,(b+k)+m(M, gM ) = k+1 is unique. In this case, we call M the k-dimensional
elementary warped product extension of (B, gB, u); see Definition 3.2.

3 The Warped Product Structure

In this section we prove Theorem 2.2 and Theorem 2.3. The proof of Theorem 2.6 is
given by Theorems 3.1 and 3.2 for statement (1), (3) and (4), by Proposition 3.3 for
statement (2).

First we review the relevant elements from [10]. The warped product structure is
built up from a natural stratification of the manifold (M, g) coming from the zero set
of functions in Wλ,n+m(M, g). Recall that

Wp = Wp (M, g) = {
w ∈ Wλ,n+m (M, g) : w (p) = 0

}
. (3.1)

Clearly Wp ⊂ Wλ,n+m(M, g) has codimension 1 or 0. The singular set S ⊂ M is the
set of points p ∈ M where Wp = Wλ,n+m(M, g), i.e., all functions in Wλ,n+m(M, g)
vanish. The regular set is the complement.

Assume that dimWλ,n+m(M, g) > 1. On the regular set, we define two orthogonal
distributions, the distribution F as

Fp = {∇w : w ∈ Wp
}
, (3.2)

and B is its orthogonal complement, i.e.,

TpM = Fp ⊕ Bp, for all p ∈ M − S.

Let k = dimWp = dimWλ,n+m(M, g) − 1 and b = n − k. It follows that Fp has
dimension k and Bp has dimension b. In Theorem A of [10] we showed that these two
distributions are integrable and the integral submanifolds give us the warped product
structure on (M, g).

Theorem 3.1 ([10]) Let 1 ≤ k ≤ n − 1 and (Mn, g) be a complete simply connected
Riemannian manifold with dimWλ,n+m(M, g) = k + 1. Then

M = B ×u F,
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where u vanishes on the boundary of B, and F is either the k-dimensional unit sphere
S
k (1) ⊂ R

k+1, k-dimensional Euclidean space Rk , or the k-dimensional hyperbolic
space Hk. In the first two cases k ≥ 1, while in the last k > 1.

Remark 3.1 From the construction of the warped product, we also know that the
regular set is diffeomorphic to int(B) × F and that on the regular set B = T B and
F = T F .

We denote by π1 : M → B and π2 : M → F the projections to each factor. Next
we show how the space Wλ,n+m(M, g) is determined in terms of the base B and fiber
F .

Theorem 3.2 Let M = B ×u F be as in Theorem 3.1. Then we have

u ∈ Wλ,b+(k+m)(B, gB)

and

Wλ,n+m(M, g) = {
π∗
1 (u) · π∗

2 (v) : v ∈ WμB (u),k+m(F, gF )
}
.

Proof From the results in [10], we determine the spaceWλ,n+m(M, g) in terms of the
base B and fiber F . First note that for any two vectors X,Y ∈ B we have

(
RicM − λg

)
(X,Y ) = RicB(X,Y ) − k

u
(HessB u) (X,Y ) − λgB(X,Y ).

From [10, Theorem 4.2] we know that

1

m

(
RicM − λg

)
|B = 1

u
HessB u.

Combining these two equations gives us

HessB u = u

k + m

(
RicB − λgB

)
,

in other words, u ∈ Wλ,b+(k+m)(B, gB).
Let μB be the quadratic form on the space Wλ,b+(k+m)(B, gB),

μB(z) = z�Bz + (k + m − 1) |∇z|2B + λz2, for z ∈ Wλ,b+(k+m)(B, gB). (3.3)

From Theorem B in [10], we also know that

Wλ,n+m(M, g) = {
π∗
1 (u) · π∗

2 (v)
}
,

where v ∈ C∞(F) satisfies the equation

HessF v = −τvgF ,
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2628 C. He et al.

and τ is constant when k > 1 and a function on F when k = 1. A direct calculation
in Appendix 1 (see Eq. (5.2) with z = 0) shows that

HessF v = v

m

(
RicF − μB(u)gF

)
,

i.e., we have v ∈ WμB (u),k+m(F, gF ). This finishes the proof.

Remark 3.2 Note that on the warped product M = B ×u F we have

u�Mu = u�Bu + k |∇u|2B .

It follows that μM (u) = μB(u).

Theorems 3.1 and 3.2 prove the statements (1), (3) and (4) in Theorem 2.2. Before
showing (2)we prove some facts aboutwarped products, B×u F , with B an irreducible
base manifold B.

Proposition 3.1 Let (B, gB, u) be a (λ, k +m)-irreducible base manifold and let M
be a manifold of the form

M = B ×u F.

Then Wλ,n+m(M, g) consists of functions of the form

π∗
1 (u) · π∗

2 (v),

where v ∈ WμB (u),k+m(F).

Proof This follows from Theorem 6.3 in the Appendix. If μB(u) �= 0, we are in
case (1.a) of Theorem 6.3 and, since u spans Wλ,b+(k+m)(B), we have that w =
π∗
1 (u) · π∗

2 (v) and v ∈ WμB (u),k+m(F).
If μB(u) = 0, then we are in case (1.b) of Theorem 6.3. Recall that if ∂B �= ∅ then

μB(u) �= 0. So we know that the boundary is empty and that F = R
k . Since B is a

(λ, k +m)-irreducible base manifold, we can only choose z to be a constant multiple
of u and so Theorem 6.3 gives us that

w = π∗
1 (u)

(
C + π∗

2 (v̄)
)
,

where v̄ is a linear function. The spaceW0,k+m(Rk) is spanned by constant and linear
functions. This shows that v = v̄ + C ∈ WμB (u),k+m(F) in this case as well. �


Proposition 3.1 shows that base manifolds can always be extended by an appro-
priately chosen fiber F to produce metrics with dimWλ,n+m(M, g) > 1. The nicest
choice of F is the appropriate space form.

Definition 3.1 (Fk, gF ) is called the fiber space corresponding to the (λ, (k + m))-
base manifold (B, gB, u) if it satisfies the following conditions.
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(1) When k > 1, Fk is the complete simply connected space form with sectional
curvature 1

m+k−1μB(u).
(2) When k = 1 and ∂B = ∅, F = R.
(3) When k = 1 and ∂B �= ∅, F = S

1
a is the circle with radius

a =
√

m

μB(u)
.

Remark 3.3 When k > 1, from Example 2.1, we see that a fiber space always has
dimWμB (u),k+m(F) = k+1.When k = 1 this is also true and follows from Examples
1.9 and 1.10 in [10].

An elementary warped product extension is a warped product of an irreducible base
manifold with the corresponding fiber space.

Definition 3.2 Let (Bb, gB, u) be a (λ, k + m)-irreducible base manifold and let Fk

be the fiber space corresponding to (B, gB, u). The k-dimensional elementary warped
product extension of B is the metric M = B ×u F .

Note that when the boundary of B is empty, the metric on the extension is always
a smooth metric. When B has non-empty boundary this is also true.

Proposition 3.2 Suppose that (B, gB, u) is a (λ, k+m)-base manifold with ∂B �= ∅.
Then the elementary warped product extension of B is a smooth Riemannian manifold.

Proof Since u = 0 on ∂B we have

μB(u) = u�u + (m + k − 1)|∇u|2 + λu2

= (m + k − 1)|∇u|2.

Since k ≥ 1, it follows that μB(u) > 0, and that |∇u|2 is constant on ∂B, which is
equal to μB (u)

m+k−1 . This shows that F
k = S

k has the correct size to make M = B ×u F
a smooth metric. �


This now gives us Theorem 2.3.

Proof of Theorem 2.3 From Proposition 3.1, Wλ,n+m(M, g) consists of functions of
the form

π∗
1 (u) · π∗

2 (v) v ∈ WμB (u),k+m(F).

Thus the elementary warped product extension has dimWλ,n+m(M) = k + 1.
Moreover, when k > 1, the fiber space is the unique k-dimensional space with
dimWμB (u),k+m(F) = k + 1, so it is the unique extension with dimWλ,n+m(M) =
k + 1.

When k = 1 and ∂B �= ∅ the fiber space is the unique choice which makes
M = B ×u F a smooth metric. �
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We now turn our attention back to finishing the proof of Theorem 2.2 by showing
property (2) holds. Recall that the warped product splitting constructed in Theorem
3.1 has the property that the regular set is diffeomorphic to int(B) × F and that on
the regular set B = T B and F = T F . Property (2) follows from the fact that these
conditions also characterize elementary warped product extensions.

Proposition 3.3 Let k ≥ 1 and suppose that Mn = Bb ×u Fk is a simply connected
warped product manifold such that dimWλ,n+m(M) = k+1. Assume further that the
regular set is diffeomorphic to int(B) × F and that on the regular set B = T B and
F = T F. Then (B, gB, u) is a (λ, k + m)-irreducible base manifold and M is the
k-dimensional elementary warped product extension of (B, gB, u).

Proof FromTheorem3.2weknow thatu ∈ Wλ,b+(k+m)(B) and the spaceWλ,n+m(M)

consists of the functions

π∗
1 (u) · π∗

2 (v) for v ∈ WμB (u),k+m(F).

Next we show that F is a fiber space. When k = 1, the condition of F being a
fiber space is forced by the simple connectivity of M and the smoothness of the metric
B×u F . When k > 1, we already know that F is a space form, so we just need to show
that the Ricci curvature is k−1

m+k−1μB(u). If the Ricci curvature is not k−1
m+k−1μB(u)

then by Example 2.1, dimWμB (u),k+m(Fk) < k + 1. However, since Wλ,n+m(M) is
the space of functions π∗

1 (u) · π∗
2 (v) for v ∈ WμB (u),k+m(F), this contradicts that

dimWλ,n+m(M) = k + 1.
Now that we know that F is a fiber space, we want to show that B is an irreducible

base manifold.We argue by contradiction. The aim is to show that additional functions
in Wλ,b+(k+m)(B) lift to generate elements of Wλ,n+m(M) which are ruled out by the
fact that Wλ,n+m(M) consists only of functions of the form π∗

1 (u) · π∗
2 (v).

This follows from directly computing Wλ,n+m(M) when M is a warped product,
which we carry out in Appendix 1. In fact, since u ∈ Wλ,b+(k+m)(B) and F is a fiber
space, we are in cases either (1.a) or (1.b) of Theorem 6.3.

IfμB(u) �= 0 and B is not an irreducible base manifold, then we can find a function
z ∈ Wλ,b+(k+m)(B) which is not a multiple of u such that μ(u, z) = 0. By case (1.a)
of Theorem 6.3, we then have

π∗
1 (z) + π∗

1 (u) · π∗
2 (v) ∈ Wλ,n+m(M) v ∈ WμB (u),k+m(F).

If μB(u) = 0, then since F is a fiber space, we know that F is Rk and by case (1.b)
of Theorem 6.3, we have that

π∗
1 (z) + π∗

1 (u) · π∗
2 (v) ∈ Wλ,n+m(M),

where v satisfies

HessF v = − 1

m + k − 1
μB(u, z)gF .
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Since F = R
k note that there is always a solution to this equation, no matter the

constant μB(u, z).
In either case, we have a function in Wλ,n+m(M) of the form

π∗
1 (z) + π∗

1 (u) · π∗
2 (v),

where v is some function on F and z is not a constant multiple of u. Note also that,
when ∂B �= ∅, Proposition 1.7 of [10] shows that z can be chosen to satisfy Neumann
boundary conditions, which implies that π∗

1 (z) is a smooth function on M .
On the other hand, we know functions in Wλ,n+m(M) are all of the form π∗

1 (u) ·
π∗
2 (v̄) so when u �= 0 we have

π∗
1 (z) + π∗

1 (u) · π∗
2 (v) = π∗

1 (u) · π∗
2 (v̄)

π∗
1 (z)

π∗
1 (u)

= π∗
2 (v̄ − v).

Since the left-hand side is constant on F this shows that v̄ − v is constant. But this
shows that z = Cu, a contradiction to the choice of z. �


Finally, we also show how the quadratic form μ on an elementary warped product
extension can be computed from the quadratic form on F .

Proposition 3.4 Let (Mn, g) be the k-dimensional elementary warped product exten-
sion of a (λ, n + m)-irreducible base manifold (B, gB, u). Then

μM (π∗
1 (u) · π∗

2 (v)) = μF (v) for any v ∈ WμB (u),k+m(F, gF ).

In particular, if m = 1 then μM = 0. If m > 1 then M is elliptic, parabolic, or
hyperbolic if and only if the corresponding fiber F is.

Proof We prove this by straightforward computation. Using the warped product struc-
ture M = B ×u F we have

∇(π∗
1 u · π∗

2 v) = v∇u + ∇Fv

u
,

�(π∗
1 u · π∗

2 v) = v�(π∗
1 u) + u�(π∗

2 v)

= v�Bu + k
v

u
|∇u|2B + �Fv

u
.

So we have

μ(π∗
1 u · π∗

2 v) = uv
(
v�Bu + k

v

u
|∇u|2B + �Fv

u

) + (m − 1)v2 |∇u|2B
+ (m − 1)

∣∣∣∇Fv

∣∣∣
2

F
+ λu2v2

= v�Fv + (m − 1)|∇Fv|2F + v2(u�Bu + (m + k − 1)|∇u|2B + λu2)
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= v�Fv + (m − 1)|∇Fv|2F + μB(u)v2

= μF (v),

which finishes the proof. �


4 Gap Theorems

In this section we collect a few gap theorems for dimWλ,n+m(M). The first is that it
is not possible for dimWλ,n+m(M) = n.

Corollary 4.1 Let Mn be a simply connected manifold with

dimWλ,n+m(Mn, g) ≥ n.

Then dimWλ,n+m(M, g) = n + 1.

Proof First note that this is true in the one-dimensional case as when B = R,
dimWλ,1+(k+m)(B) = 2 and when B is an interval and dim(Wλ,1+(k+m)(B))D = 1
there are also additional functions in Wλ,1+(k+m)(B) satisfying Neumann boundary
conditions. This is computed explicitly in [10, Sect. 1].

Now suppose that n > 1, and that dimWλ,n+m(M) = n. Then

M = B1 ×u Fn−1,

where B is a one-dimensional irreducible base manifold.
However, since dimWλ,1+(k+m)(B) = 2 when B is a line or an interval, there are

no simply connected one-dimensional irreducible base manifolds. �

It is possible for dimWλ,n+m(M) = n−1 and fromTheorem2.2 they are exactly the

elementary extensions of irreducible base surfaces. There is a complete classification
of surfaces B with Wλ,2+(k+m)(B) �= {0}; see [1] or [8]. One consequence of this
classification is the following.

Corollary 4.2 If M is simply connected, compact, and dimWλ,n+m(M, g) = n − 1,
then M is isometric to the Riemannian product S2 × S

n−2.

Proof In dimension two theonly compact irreducible basemanifolds are theλ-Einstein
spheres. Also see [7]. �


A space with dimWλ,n+m(M) = n − 2 will be a warped product extension of a
three-dimensional irreducible basemanifold. There are interesting, non-Einstein three-
dimensional examples constructed on the sphere by Böhm in [2]. Using the results in
[9] we can, however, classify the examples with constant scalar curvature.

Corollary 4.3 Suppose that M is simply connected with constant scalar curvature. If
dimWλ,n+m(M, g) = n − 1 or n − 2 then M is isometric to the Riemannian product
B × F, where B is a space form of dimension 2 or 3, respectively, with Einstein
constant λ, and F is another space form.
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Proof The assumption dimWλ,n+m(M) ≥ n−2 tells us that B has dimension at most
three. A straightforward calculation of the curvatures of a warped product shows that
M having constant scalar curvature implies B does as well. Theorem 1.3 of [9] implies
that any base with constant scalar curvature and dimension at most three must be a
space form with Einstein constant λ. Hence M is isometric to the product B × F .

Remark 4.1 This result is also optimal since we constructed constant scalar curvature,
four-dimensional examples with dimWλ,n+m(M) = 1 which are not Einstein in [9].
Taking elementary warped product extensions of these examples gives examples in
any dimension with constant scalar curvature and dimWλ,n+m(M) = n − 3. Also see
[11].

In general, for constant scalar curvature and m > 1 we know that the form of
the function u is determined by λ and the type of μ; see [9, Proposition 3.11]. We
summarize this result here.

Proposition 4.1 Let m > 1 and suppose that M has constant scalar curvature with
Wλ,n+m(M) �= {0}. Then one of the following cases holds.

(1) M = B × F, where B is λ-Einstein.
(2) M is elliptic and

(a) if λ > 0 then κ > 0, u = Acos(
√

κr),
(b) if λ = 0 then u = Ar,
(c) if λ < 0 then κ < 0, u = Asinh(

√−κr).
(3) M is parabolic, λ < 0, κ < 0 and u = A exp(

√−κr).
(4) M is hyperbolic, λ < 0, κ < 0 and u = Acosh(

√−κr),

where κ = scal−(n−m)λ
m(m−1) , r : B → R is a distance function, and A > 0 is a constant.

One consequence of this theorem is that in the elliptic case the manifold M must
have a singular set or be a Riemannian product.

Corollary 4.4 Let m > 1 and suppose that M has constant scalar curvature with
S = ∅. If it is elliptic or has κ > 0, then it is isometric to the Riemannian product
B × F.

Proof In the previous Proposition 4.1, we see that in the case when M is not isometric
to the product B × F , if either κ > 0, or μ is positive definite, then S �= ∅. �


5 The Isometry Group

Since the Ricci tensor is invariant under isometries, the isometry group Iso (M, g) acts
on Wλ,n+m(M, g) by composition with functions:

(
Iso (M, g) ,Wλ,n+m(M)

) → Wλ,n+m(M)

(h, w) �→ w ◦ h−1.
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Moreover, this action preserves μ. The derivative of this action is the directional
derivative in the direction of a Killing vector field

(
iso (M, g) ,Wλ,n+m(M)

) → Wλ,n+m(M)

(X, w) → −DXw,

which induces a skew action with respect to μ

0 = μ (DXv,w) + μ (v, DXw) .

We are interested in the isometry group of a space with dimWλ,n+m(M) > 1. By
Theorem 2.2 we have that M = B ×u F , where (B, gB, u) is a base manifold. For an
arbitrary warped product, the isometries of the fiber always lift to isometries of M , but
the isometries of the base may not. We will show in Theorem 5.1 that the isometries
of (B, gB) do lift in our case.

For a base manifold (B, gB, u), let Iso(B, gB) be the group of isometries that
preserve ∂B. Theorem 5.1 will follow from considering the action of Iso(B, gB) on
the function u.

Proposition 5.1 Suppose that (B, gB, u) is a base manifold. Then we have

(1) For any h ∈ Iso(B, gB), there is a constant C > 0 such that u ◦ h−1 = Cu and
Dhp(∇u) = C∇u|h(p).

(2) If X is a Killing vector field then there is a constant K so that DXu = Ku.

Moreover, if there exists h with C �= 1, or X with K �= 0 then μ(u) = 0.

Proof u(h−1(x)) ∈ W implies that u(h−1(x)) = Cu(x) for some constant C since
W is one dimensional. u ≥ 0 implies that u ◦ h−1 ≥ 0, which implies C > 0. We also
have

d(u ◦ h−1)(X) = du(Dh−1(X))

= g(∇u, Dh−1(X))

= g(Dh(∇u), X),

which implies that Dhp(∇u) = ∇(u ◦ h−1) = C∇u|h(p). Since μ(u ◦ h−1) = μ(u),
if C �= 1 then μ(u) = 0.

If X is a Killing vector field, then DXu ∈ W . So we also have DXu = Ku for
some constant K . The skew-symmetry of the action then gives us

0 = μ (DXu, u) + μ (u, DXu)

= 2Kμ(u).

So either K = 0 or μ(u) = 0. �
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Definition 5.1 Let (B, gB, u) be a base manifold. Then there is a well-defined group
homomorphism into the multiplicative group of positive real numbers

(Iso(B, gB), ◦) → (R+, ·)
h �→ Ch,

where Ch is the constant so that u ◦ h−1 = Chu. We define Iso(B, gB)u to be the
kernel of this map, or equivalently the subgroup of isometries that preserves u.

We have the following facts about Iso(B, gB)u .

Proposition 5.2 Suppose that (B, gB, u) is a base manifold. Then Iso(B, gB)u ⊂
Iso(B, gB) is a subgroup of codimension at most one. Moreover,

(1) if μ(u) �= 0, then Iso(B, gB)u = Iso(B, gB),
(2) if B is compact, then Iso(B, gB)u = Iso(B, gB),
(3) if h ∈ Iso(B, gB) has an interior fixed point, then h ∈ Iso(B, gB)u, and
(4) any compact, connected Lie subgroup of Iso(B, gB) is contained in Iso(B, gB)u.

Proof Iso(B, gB)u has codimension atmost one because it is the kernel of a homomor-
phism into a one-dimensional group.μ(u) �= 0 implies that Iso(B, gB)u = Iso(B, gB)

was proven in the previous Proposition 5.1.
If B is compact, then u has a positive maximum value and u ◦ h−1 has the same

maximum, showing that Ch = 1. Moreover, if h has an interior fixed point, x , then
u(x) = u(h(x)) > 0, so Ch = 1.

Finally, if X is a Killing vector field coming from G ⊂ Iso(M, g) a compact,
connected Lie group of positive dimension, then DXu = 0. Otherwise, since K �= 0,
u must grow exponentially along the integral curve of X , contradicting that G is
compact. �

Remark 5.1 It is also worth pointing out that if ∂B �= ∅, then μ(u) and m − 1 have
the same sign.

Next we turn our attention to the warped product M = B ×u F with
dimWλ,n+m(M) > 1. First we state a lemma about when a map on the base of a
warped product can be extended to an isometry of the total space.

Lemma 5.1 Let M = B × F be a warped product with the metric

g = gB + u2gF .

A map of the form

h = h1 × h2 with h1 : B → B h2 : F → F

is an isometry of M if and only if h1 ∈ Iso(B, gB), u ◦ h−1
1 = Cu for some constant

C, and h2 is a C-homothety of (F, gF ).
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Proof Fix a point (x, y) ∈ M and let X,Y be two vectors in T B(x,y). Then we have

g(Dh(X), Dh(Y ))|h(x,y) = gB(Dh1(X), Dh1(Y ))|h1(x).

So h is an isometry on horizontal vectors if and only if h1 is an isometry of B.
Now let U, V be two vectors in T F(x,y). The assumption that h is an isometry

implies that

u2(x)gF (U, V )|y = g(U, V )|(x,y)
= g(Dh(U ), Dh(V ))|h(x,y)

= u2(h1(x))gF (Dh2(U ), Dh2(V ))|h2(y),

which tells us

gF (U, V )|y = u2(h1(x))

u2(x)
gF (Dh2(U ), Dh2(V ))|h2(y).

This implies that the quantity u2(h1(x))
u2(x)

must be constant, or equivalently that u◦h−1
1 =

Cu, for some constant C . Plugging this back into the previous equation tells us that

gF (Dh2(U ), Dh2(V ))|h2(y) = C2gF (U, V )|y,

i.e., h2 is a C-homothety of (F, gF ). �

Wenowcompute the full isometry group of an elementarywarped product extension

from the isometry groups of B and F .

Theorem 5.1 Let M be simply connected with dimWλ,n+m(M) = k + 1 > 1. Then
Isom(M, g) is the space of maps h : M → M of the form

h = h1 × h2 with h1 : B → B h2 : F → F,

where h1 ∈ Iso(B, gB) and

(1) If μ(u) �= 0 then h2 ∈ Iso(F, gF ).
(2) If μ(u) = 0 then h2 is a C-homothety of Rk , where C = Ch1 is the constant so

that u ◦ h−1
1 = Ch1u. Namely,

h2(v) = b + CA(v) with b ∈ R
k and A ∈ O(Rk).

Proof First we show that that isometries of M preserve the distributions B and F . Let
w ∈ Wp and setv = w◦h−1. Thenv(h(p)) = w(p) = 0 and sov ∈ Wh(p). This shows
that isometries preserve the singular set. Moreover, since ∇v|h(p) = Dhp(∇w|p),
Dhp maps Fp to Fh(p). Since B is the orthogonal complement of F and h is an
isometry, Dh also preserves B.
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Since h preserves the singular set, on the regular set, which is diffeomorphic to
int(B) × F , we have

h : int(B) × F → int(B) × F

(x, y) �→ (h1(x, y), h2(x, y)).

The differential is

Dh : T Bx × T Fy → T Bh1(x,y) × T Fh2(x,y).

The fact that Dh preserves the distributions says that this map is block diagonal with
respect to the splitting. This shows that the derivative of h1 in the F direction is zero
and the derivative of h2 in the B direction is zero, i.e., h1 = h1(x) and h2 = h2(y).

Since B is a basemanifoldweknow that there is a constantC such thatu◦h−1
1 = Cu.

Whenμ(u) �= 0we know thatC = 1 for every h1. So this implies that h2 is an isometry
of (F, gF ). Applying Lemma 5.1 then tells us that all such maps of the form h1 × h2
are isometries.

When μ(u) = 0, it is possible to have C �= 1. In this case, F = R
k and h2 can be

any C-homothety, i.e., a map of the form

h2(v) = b + CA(v) with b ∈ R
k and A ∈ O(Rk).

This finishes the proof. �

Remark 5.2 Exercise 11 on p. 214 in [15] states that only the first case is possible.
However, we see that the second case definitely appears when F is Rk .

Remark 5.3 Note that, even when μ(u) = 0, we get that h2 is an isometry as long as
we have Iso(B, gB)u = Iso(B, gB). In general, the space of product maps

Iso(B, gB)u × Iso(Rk)

is a codimension-one subgroup of Iso(M, g), and it gives us a short exact sequence

1 → Iso(Rk) → Iso(M, g) → Iso(B, gB) → 1.

Moreover, the map on the right, given by projection onto the first factor h1, has a right
inverse

h1 �→ (h1,Ch1 idF ).

This implies that Iso(M, g) is a semi-direct product of Iso(B, gB) with Iso(Rk) and
the representation giving the group operation is the map

φ : Iso(B, gB) → Aut(Iso(Rk))

h1 �→ φh1 (v �→ b + A(v)) = (
v �→ Ch1b + A(v)

)
.
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Now that we have the structure of the isometry group, we can prove Theorem 1.2.

Proof of Theorem 1.2 Assume w1 and w2 are linearly independent; otherwise, the
conclusion is trivial. By Theorem 2.2 and Remark 2.3 we have

M = B ×u Fk w1 = uv1 w2 = uv2,

where Fk is a space form and vi ∈ WμB (u),b+(k+m)(F) are linearly independent. From
Proposition 3.4 we also have μ(v1) = μ(v2).

If we show that there is an isometry φ of F so that v2 = C(v1 ◦φ), then by Lemma
5.1 this maps lifts to an isometry of M . Abusing notation, we also let φ denote the
lifted isometry of M . The lifted isometry then clearly has the property that

w2 = uv2 = C(uv1 ◦ φ) = C(w1 ◦ φ).

Therefore, the result will follow if it is true that v ∈ WμB (u),b+(k+m)(F).
In these cases, by Example 2.1 (WμB (u),b+(k+m)(F), μF ) is isometric toRk+1 with

quadratic form that is elliptic (standard Euclidean metric) when F = S
k , hyperbolic

(standard Minkowski metric) when F = Hk , or semi positive-definite with nullity
one when F = R

k . This isometry is given by the evaluation map at a point p, which
we denote by ep.

From the evaluation maps, we can also see that the isometries of F act on Rk+1 as
follows. Fix a point p ∈ F and let φ be an isometry of F such that φ(p) = q. Then
since the map w → w ◦ φ preserves the quadratic form μ, the map

eq ◦ φ∗ ◦ e−1
p : (Rk+1, μp) → (Rk+1, μq)

is an isometry for each φ. This shows that the isometries of F are in correspondence
with a k(k+1)

2 -dimensional subgroup of the linear maps of Rk+1, which preserve the
connected components of the levels of μF . This correspondence can also be seen
infinitesimally using theKilling vector fields constructed in Theorem 2.1. See Sect. 8.2
of [10].

In the elliptic case this subgroup contains SO(k + 1). Since SO(k + 1) acts
transitively on the distance spheres of Rk+1, which are precisely the levels of μ in
WμB (u),b+(k+m)(F), this gives the result. Similar arguments give the result in the
degenerate case and hyperbolic case.

The arguments give us that C can be chosen to be 1 in the elliptic case (since the
levels of μ are connected), and it can be chosen to be ±1 in the hyperbolic case. In the
degenerate case, when μ(w1) = μ(w2) = 0, it is not possible to restrict C , as w1,2
could be arbitrary constant functions. �
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Appendix 1: The Space W for General Warped Product Manifolds

In this Appendix we computeW (M, g), where (M, g) = (
B × F, gB + u2gF

)
is any

warped product manifold. This result is referenced a few times in the proof of Theorem
2.2. As in Sect. 3 we let π1 : M → B and π2 : M → F denote the projections. π1 is
a Riemannian submersion, and we let X,Y, . . . denote horizontal vector fields of this
submersion andU, V, . . . denote vertical vector fields. We start by recalling a lemma
about the splitting of functions on a warped product.

Lemma 6.1 ([10]) If w : M → R satisfies

(Hessg w)(X,U ) = 0

for all X ∈ T B and U ∈ T F, then

w = π∗
1 (z) + π∗

1 (u) · π∗
2 (v),

where z : B → R, v : F → R are smooth functions.

Remark 6.2 Note that this decomposition of w is not unique, as we can replace z by
z + αu and v by v − α for a constant α and still get a valid decomposition for w.

This allows us to compute the space Wλ,n+m(M) for a general warped product
metric. The computation breaks into a number of cases.

Theorem 6.3 Let M = B ×u F be a warped product.

(1) Suppose u ∈ Wλ,b+(k+m)(B, gB).
(1.a) If F is Einstein with RicF = k−1

m+k−1μB(u) and μB(u) �= 0, then
Wλ,n+m(M) is the space of functions

π∗
1 (z) + π∗

1 (u)π∗
2 (v),

where z ∈ Wλ,b+(k+m)(B) with μB(u, z) = 0 and v ∈ WμB (u),k+m(F).
(1.b) If F is Einstein with RicF = k−1

m+k−1μB(u) and μB(u) = 0, then
Wλ,n+m(M) is the space of functions

π∗
1 (z) + π∗

1 (u)π∗
2 (v),

where z ∈ Wλ,b+(k+m)(B) and v satisfies

HessF v = − 1

m + k − 1
μB(u, z)gF .

(1.c) If F does not satisfy RicF = k−1
m+k−1μB(u), then Wλ,n+m(M) is the space

of functions

π∗
1 (u)π∗

2 (v),

where v ∈ WμB (u),k+m(F).
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(2) Suppose u /∈ Wλ,b+(k+m)(B, gB).
(2.a) If F is σ -Einstein, then Wλ,n+m(M) consists of functions of the form

π∗
1 (z),

where z : B → R satisfies

HessB z = z

m

(
RicB − k

u
HessB u − λgB

)

gB(∇u,∇z) = z

um

(
σ − (u�Bu + (k − 1)|∇u|2B + λu2)

)
.

(2.b) If F is not Einstein, then Wλ,n+m(M) = {0}.
Remark 6.4 In the case where B has boundary, note that a function π∗

1 (z) is a smooth
function on B ×u F if and only if z satisfies Neumann boundary conditions, i.e.,
∂z
∂ν

|∂B = 0, where ν is a normal vector field of ∂B.

Proof The Ricci curvatures of a warped product are given by

(Ric − λg)(X,Y ) = RicB(X,Y ) − k

u
(HessB u)(X,Y ) − λgB(X,Y )

(Ric − λg)(X,U ) = 0

(Ric − λg)(U, V ) = RicF (U, V ) − (u�Bu + (k − 1)|∇u|2B + λu2)gF (U, V ).

If w ∈ Wλ,n+m(M) we see that the Hessian splits along the warped product and thus,
from Lemma 6.1, we have w = π∗

1 (z)+π∗
1 (u) ·π∗

2 (v) for some functions z on int(B)

and v on F . We can also assume that z is not a non-zero multiple of u. Multiplying
the last set of equations by w

m , we have

w

m
(Ric − λg) (X,Y )

= z

m

(
RicB(X,Y ) − k

u
(HessB u)(X,Y ) − λgB(X,Y )

)

+ uv

m

(
RicB(X,Y ) − k

u
(HessB u)(X,Y ) − λgB(X,Y )

)

w

m
(Ric − λg) (U, V )

= z

m

(
RicF (U, V ) − (u�Bu + (k − 1)|∇u|2B + λu2)gF (U, V )

)

+ uv

m

(
RicF (U, V ) − (u�Bu + (k − 1)|∇u|2B + λu2)gF (U, V )

)
.

The Hessian of w is

(Hessw)(X,Y ) = v(HessB u)(X,Y ) + (HessB z)(X,Y )
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(Hessw)(U, V ) = u(HessF v)(U, V ) + uv|∇u|2BgF (U, V )

+ ugB(∇u,∇z)gF (U, V ).

Equating the horizontal equations gives us that

(HessB z)(X, Y ) − z

m

(
RicB(X,Y ) − k

u
(HessB u)(X,Y ) − λgB(X,Y )

)

= vu

m

(
RicB(X,Y ) − m + k

u
(HessB u)(X,Y ) − λgB(X,Y )

)
. (5.1)

Note that the condition u ∈ Wλ,b+(k+m)(B) is exactly satisfied if the quantity

RicB(X,Y ) − m + k

u
(HessB u)(X,Y ) − λgB(X,Y )

inside the parentheses on the last line is identically zero. If there is a point in int(B)

where the quantity is non-zero, we can fix that point and let y ∈ F vary. The only quan-
tity in the Eq. (5.1) which changes with y is v. This shows that if u /∈ Wλ,b+(k+m)(B),
then v must be constant. Then we can write w = π∗

1 (z) for a possibly new function z
and thus v = 0. The equations on horizontal and vertical directions then become

HessB z = z

m

(
RicB − k

u
HessB u − λgB

)

gB(∇u,∇z)gF = z

um

(
RicF − (u�Bu + (k − 1)|∇u|2B + λu2)gF

)
.

The second equation above tells us that either RicF is constant or z = 0, and we are
in cases (2.a) and (2.b).

Next we assume that u ∈ Wλ,b+(k+m)(B). Then the horizontal equation (5.1)
becomes

(HessB z)(X,Y ) = z

u
(HessB u)(X,Y ),

which shows that z ∈ Wλ,b+(k+m)(B). In this case note that the quadratic form μB on
Wλ,b+(k+m)(B, gB) is given by

μB(z) = z�Bz + (k + m − 1) |∇z|2B + λz2.

Moreover, sincem+k−1 > 0, we have a well-defined μ̄B(z) = μB (z)
m+k−1 . The vertical

equation is then

u (HessF v) (U, V )

= −ugB(∇u,∇z)gF (U, V ) + z

m

(
RicF (U, V ) − μB(u)gF (U, V )

)

+ z|∇u|2BgF (U, V ) + uv

m

(
RicF (U, V ) − μB(u)gF (U, V )

)
. (5.2)
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Dividing u on both sides yields

(HessF v) (U, V )

= −gB(∇u,∇z)gF (U, V ) + z

um

(
RicF (U, V ) − μB(u)gF (U, V )

)

+ z

u
|∇u|2BgF (U, V ) + v

m

(
RicF (U, V ) − μB(u)gF (U, V )

)

= −μ̄B(u, z)gF (U, V ) + z

u

1

m

(
RicF (U, V ) − (k − 1)μ̄B(u)gF (U, V )

)

+ v

m

(
RicF (U, V ) − (k + m − 1)μ̄B(u)gF (U, V )

)
.

Fixing a point in F and letting this equation vary over B shows that either z is a
constant multiple of u, or gF is (k − 1)μ̄B(u)-Einstein. Since we picked z so that it
is not a non-zero multiple of u, this shows that if RicF is not equal to (k − 1)μ̄B(u),
then z = 0 and

HessF v = v

m

(
RicF − (k + m − 1)μ̄B(u)gF

)
,

which gives us case (1.c). If RicF = (k − 1)μ̄B(u)gF , then we have

HessF v + μ̄B(u)vgF = −μ̄B(u, z)gF .

If μ̄B(u) �= 0, then by adding a constant α (with μ̄B(u, z) = αμ̄B(u)) to z and
subtracting z by αu we may assume that μ̄B(u, z) = 0 and then we have

HessF v = −μ̄B(u)vgF ,

which gives us case (1.a). Otherwise, we have μ̄B(u) = 0, i.e., (F, gF ) is Ricci flat
and

HessF v = −μ̄B(u, z)gF ,

which is case (1.b). �


Appendix 2: The Quadratic Form µ

In this Appendix we discuss more details about the quadratic form μ. First we deal
with the degenerate m = 1 case.

Proposition 7.1 Let m = 1 and suppose that Wλ,n+1(M) �= {0}. Then either

(1) M is λ-Einstein,
(2) μ is positive definite, dimWλ,n+1(M) = 1, and scal > (n − 1)λ and is non-

constant,
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(3) μ is negative definite, dimWλ,n+1(M) = 1, and scal < (n − 1)λ and is non-
constant, or

(4) μ(w) = 0 for all w ∈ W and scal = (n − 1)λ is constant.

In cases (1), (2), and (3) the non-zero functions in Wλ,n+1(M) do not vanish.

In particular, this implies that μ is completely degenerate when m = 1 and
dimW (M) > 1.

Corollary 5.1 If dimWλ,n+1(M) > 1 then μ(w) = 0 for all w ∈ W.

Remark 7.3 When there is a w with μ(w) = 0, (M, g) is called a static metric.
Abstractly, the cases with μ �= 0 can occur, for example, if

gM = dr2 + cosh2(r)gFn−1,

where F is an (n− 1)-Einstein metric with Ricci curvature −(n− 1). Then cosh(r) ∈
W−n,n+1(M, gM ) and μ is negative definite. On the other hand, if μ(w) �= 0 there
is no Einstein metric E = M ×w F1 because there is no one-dimensional fiber with
Ricci curvature μ(w).

Proof of Proposition 7.1 When m = 1 we have

μ(w) = w2 (scal − (n − 1)λ) .

If w is constant then M is λ-Einstein. Otherwise, suppose that μ(w) �= 0. Then we
have

w2 = μ(w)

scal − (n − 1)λ
,

showing that μ(w) and scal− (n − 1)λ have the same sign and that w never vanishes.
This also shows that w is determined up to a multiplicative constant by the scalar
curvature. This implies that dimWλ,n+1(M) = 1 and the scalar curvature is non-
constant. Cases (2) and (3) then correspond to the sign choice of μ.

Finally, if μ(w) is zero for some non-zero function w, then scal = (n − 1)λ. This
implies μ(w) = 0 for all w ∈ W . �


When m �= 1 we can also divide μ by (m − 1) and get the rescaled quadratic form

μ̄(u) = |∇u|2 + κw2, (5.3)

where

κ = scal − (n − m)λ

m(m − 1)
. (5.4)

We also record here some basic statements about the interplay of μ̄ with the space
W in the case where m �= 1; the proofs follow simply from the definition.
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Proposition 7.4 Let (M, g) be a Riemannian manifold and w ∈ Wλ,n+m (M, g) with
m �= 1. Then the following hold.

(1) If μ̄ (w) ≤ 0, then either w is trivial or never vanishes.
(2) If μ̄ (w) > 0 and κ (p) ≤ 0 for some p ∈ M, then ∇w|p �= 0.
(3) If μ̄ (w) ≥ 0 and κ (p) < 0 for some p ∈ M, then ∇w|p �= 0.
(4) If κ (p) > 0 for some p ∈ M, then μ̄ is elliptic.
(5) If κ ≥ 0 on M and κ (p) = 0 for some p ∈ M, then μ̄ is either elliptic or

parabolic.
(6) The quadratic form μ̄ has index ≤ 1, nullity ≤ 1, and they cannot both be 1.
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