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Abstract In this paper we introduce two new notions of sectional curvature for Riemannian
manifolds with density. Under both notions of curvature we classify the constant curvature
manifolds. We also prove generalizations of the theorems of Cartan–Hadamard, Synge, and
Bonnet–Myers as well as a generalization of the (non-smooth) 1/4-pinched sphere theorem.
The main idea is to modify the radial curvature equation and second variation formula and
then apply the techniques of classical Riemannian geometry to these new equations.
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1 Introduction

In this paper we are interested in the geometry of a Riemannian manifold (M, g) with
a smooth positive density function, e− f . A theory of Ricci curvature for these spaces goes
back to Lichnerowicz [20,21] and was later developed by Bakry–Emery [1] andmany others.
It has turned out to be integral to developments in both Ricci flow and optimal transport and
has thus experienced an explosion of results in the last few years. We will not try to reference
them all here, see chapter 18 of [28] for a partial survey. A notion of weighted scalar curvature
also comes up in Perelman’s work [32] and is related to his functionals for the Ricci flow,
also see [6,7,23]. The weighted Gauss curvature and the weighted Gauss Bonnet theorem in
dimension two has also been studied in [8,9].

We introduce twonewconcepts of sectional curvature for aRiemannianmanifold equipped
with a smooth vector field X . Given an orthonormal pair of vectors (V,U ) we define
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secVX (U ) = sec(V,U ) + 1

2
LX g(V, V )

secVX (U ) = sec(V,U ) + 1

2
LX g(V, V ) + g(X, V )2

where sec(V,U ) is the sectional curvature of the plane spanned by V andU . When X = ∇ f
is a gradient field we write sec f and sec f respectively. The asymmetrical placement of U
and V emphasizes that secVX (U ) �= secUX (V ). On the other hand, we will see below that in
dimension 2, bounds on secX and secX are equivalent to bounds on certain Bakry–Emery
Ricci tensors. Since the Bakry–Emery Ricci tensors generically have distinct eigenvalues
in dimension 2, the lack of symmetry of the weighted sectional curvature is a necessary
feature of any notion of weighted sectional curvature that agrees with the Bakry–Emery
Ricci curvature. We also show below that secX and secX come up naturally in at least three
places: the radial curvature equation, the second variation of energy formula, and formulae
for Killing fields.Wewill discuss ourmotivation for considering these notions from the radial
curvature equation in section two.

We use these equations to show that some of the fundamental comparison results about
sectional curvature bounds extend to secX and secX . We define the condition secX = ψ

where ψ is a real valued function on M to mean that secVX (U ) = ψ(p) for all p ∈ M and
for all orthonormal pairs of (V,U ) in TpM . We can define the conditions secX = ψ or
secX ≥ (≤)ψ , etc. similarly.

The most fundamental fact about sectional curvature is that constant curvature charac-
terizes the classical Euclidean, spherical, and hyperbolic geometries. Constant weighted
sectional curvature also characterizes natural vector fields or functions on spaces of constant
curvature.

Proposition 1.1 (Constant curvature). Let (Mn, g) be a Riemannian manifold of dimension
n > 2, let X be a smooth vector field and f be a smooth function on M, then

(1) secX = ψ if and only if g has constant curvature and X is a conformal field on (M, g).
(2) sec f = ψ if and only if both g and e−2 f g have constant curvature.

When the weighted sectional curvatures are not constant, we think of secX or sec f as
measuring how far away the space is from one of the canonical spaces in Proposition 1.1.
First we generalize the Cartan–Hadamard theorem to the case where secX ≤ 0.

Theorem 1.2 (Weighted Cartan–Hadamard theorem). If a complete Riemannian manifold
admits a smooth vector field X such that secX ≤ 0, then M does not have any conjugate
points. In particular, if M is simply connected then it is diffeomorphic to R

n.

Applying the result to the universal cover gives the standard corollary that a compact
Riemannian manifold that admits a vector field X with secX ≤ 0 must have infinite fun-
damental group and have all other homotopy groups vanish. The lack of conjugate points
also implies much more about the fundamental group, see [10]. Also note that secX ≥ secX ,
so the condition secX ≤ 0 is a stronger assumption that secX ≤ 0. The Cartan–Hadamard
theorem is not true for the condition sec f ≤ 0, see Example 4.1.

In the case of positive curvature we also prove generalizations of the following results of
Synge[35] and Berger[4].

Theorem 1.3 Suppose a compact Riemannian manifold admits a smooth function f such
that sec f > 0 then

(1) If M is even dimensional then every Killing field has a zero.
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(2) If M is even dimensional and orientable, then M is simply connected.
(3) If M is odd-dimensional, then M is orientable.

Remark 1.4 The conditions sec f > 0 or secX > 0 for a compact manifold, has been studied
much further by Wylie and Kennard in [15].

In the case of a two sided bound on curvature, we also prove the following generalization
of the homeomorphic 1/4-pinched sphere theorem. Our generalization will depend on the
maximum and minimum of u = e f , which we denote by umax and umin .

Theorem 1.5 If (M, g) is compact, simply connected Riemmanian manifold and there is a
smooth function f such that

1

4

(
umax

umin

)2

< sec f ≤
(
umin

umax

)2

,

then M is homeomorphic to the sphere.

The proof of Theorem 1.5 follows from classical methods of Klingenberg [16] and Berger
[3]. We prove that the manifold is homotopic to the sphere and apply the resolution of the
Poincare conjecture to conclude the manifold is homeomorphic to a sphere. We do not know
to what extent this theorem is optimal. Note that the hypothesis implies that umax

umin
≤ (4)1/4 ≈

1.414, so the result applies only to small densities. Some other pinching phenomena will be
considered in [38].

One reason for studying sectional curvature for manifolds with density is that understand-
ing sectional curvature will enhance our understanding of weighted Ricci curvature. Given
any real number N , the N -Bakry–Emery Ricci tensor is

RicNX = Ric + 1

2
LXg − X � ⊗ X �

N

When N = ∞ we write Ric∞
X = RicX = Ric + 1

2 LXg. As we mention above, comparison
geometry for lower bounds on the Bakry–Emery Ricci tensors have been very well studied
recently. Traditionally this has been done with the parameter N > 0 or infinite. Recently,
however the negative case has been considered, see [14,24,30] and the references there-in.
Our approach to weighted sectional curvature gives a new diameter estimate for a positive
lower bound on Ric−(n−1)

f .

Theorem 1.6 If a complete Riemannian manifold supports a bounded function f such that
Ric−(n−1)

f ≥ (n − 1)kg for some k > 0, then M is compact with finite fundamental group

and diamM ≤
(
umax
umin

) 1
n−1 π√

k
.

In [37, Theorem 1.4] Wylie and Wei proved a similar diameter bound under the stronger
hypothesis of a positive lower bound on Ric f . There are simple examples showing that f
being bounded is a necessary assumption for M to be compact. Also see [27] for a similar
result for the weighted diameter.

The paper is organized as follows. In the next section we discuss the motivation for the
definitions which come from the Bakry–Emery Ricci curvatures and the radial curvature
equation. We also discuss the relationship between our curvature and the curvature of the
conformal change. In Sect. 3 we discuss the case of constant weighted curvature; in Sect. 4
we discuss conjugate radius estimates; in Sect. 5 we consider the second variation of energy
formula; in Sect. 6 we prove the diameter estimate; and in Sect. 7 we discuss curvature
pinching. In the final section we consider Killing Fields.
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2 Motivation and the fundamental equations

In this section we first discuss the motivation for the Bakry–Emery Ricci curvature in terms
of Bochner formulas and then show how a similar approach yields the definitions of secX
and secX .

2.1 Ricci for manifolds with density

Recall the Bochner formula for the Riemannian Laplacian

1

2
�|∇u|2 = |Hess u|2 + Ric(∇u,∇u) + g (∇�u,∇u) u ∈ C3(M).

If Ric ≥ k and the dimension of M is less than or equal to n an application of the Cauchy–
Schwarz inequality gives

1

2
�|∇u|2 ≥ (�u)2

n
+ k|∇u|2 + g (∇�u,∇u) u ∈ C3(M). (2.1)

For a smooth vector field X we consider the “drift” Laplacian �X = � − DX . A simple
calculation gives the Bochner formula

1

2
�X |∇u|2=|Hess u|2 + Ric(∇u,∇u) + 1

2
LXg(∇u,∇u) + g (∇�Xu,∇u) u ∈ C3(M).

The N -Bakry–Emery Ricci tensor is defined to be RicNX = Ric + 1
2 LXg − X�⊗X�

N . When
N > 0, if RicNX ≥ k one can show that

1

2
�X |∇u|2 ≥ (�u)2

n + N
+ k|∇u|2 + g (∇�Xu,∇u) .

This looks exactly like the Bochner formula for a n + N dimensional manifold. We can
also consider the case where N = ∞, then we have the Bakry–Emery Ricci tensor Ric f =
Ric + Hess f , and Ric f ≥ k gives

1

2
�X |∇u|2 ≥ k|∇u|2 + g (∇�Xu,∇u) .

From these formulae one can prove versions of many comparison results for lower bounds
on RicNX or RicX . All of the classical results generalize to the RicNf case but with all of the
dimension dependent constants now depending on the synthetic dimension n+ N (see [34]).
We can think of Ric f as being an infinite dimensional (or dimension-less) condition and thus
the results for lower bounds on Ric f are weaker, see for example [22,25,26,37].

2.2 The radial curvature equation

Now to consider sectional curvature we examine the special case of the Bochner formula
applied to a distance function. Fix p ∈ M and let r(x) = d(p, x). The function r is smooth on
M \Cp whereCp denotes the cut locus of p. On M \Cp introduce geodesic polar coordinates
(r, θ) where θ ∈ Sn−1. The Bochner formula applied to the function r then gives

∂r (�Xr) = −|Hessr |2 − RicX (∂r , ∂r ). (2.2)
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In the case where X = ∇ f , the weighted Laplacian is also related to the weighted volume
by the equation

L∂r

(
e− f dvol

)
= (

� f r
)
e− f dvol. (2.3)

Putting these two equations together we can then see how bounds on Bakry–Emery Ricci
tensors gives control on the measure e− f dvolg .

The corresponding equations for a distance function that involve sectional curvature are
the fundamental equations.

L∂r g = 2Hessr (2.4)

(∇∂rHessr)(X, Y ) + Hess2r(X, Y ) = −g(R∂r (X), Y ) (2.5)

where Hess2r is the operator square of Hessr , namely if S is a dual (1, 1)-tensor to Hessr ,
Hessr(X, Y ) = g(S(X), Y ), thenHess2r = g(S(S(X), Y )) andour notation for the curvature
tensor is that

RV (U ) = R(U, V )V = ∇U∇V V − ∇V∇UV − ∇[U,V ]V .

So that RV is a symmetric operator on the orthogonal complement of V, which, following
[33] we call the directional curvature operator in the direction of V .

Note that if we trace Eqs. (2.4) and (2.5) we get Eqs. (2.2) and (2.3). (2.5) is called the
radial curvature equation.

For the moment we consider the gradient case, X = ∇ f . The weighted sectional curva-
tures will control the growth of e−2 f g along a geodesic γ . Consider the equation

L∂r

(
e−2 f g

)
= 2e−2 f (Hessr − g(∇ f, ∂r )g) .

Set H f r = Hessr − g(∇ f, ∂r )g, then

(∇∂r (H f r))(X, Y ) = (∇∂rHessr)(X, Y ) − Hess f (∂r , ∂r )g(X, Y )

= −Hess2r(X, Y ) − R∂r
f (X, Y )

where RV
f (U,W ) = g(RV

f (U ),W ) is the weighted directional curvature operator defined
as

RV
X (U ) = RV (U ) + 1

2
LXg(V, V )U

with X = ∇ f , so that if (V,U ) is an orthonormal pair of vectors, g(RV
X (U ),U ) = secVX (U ).

We can make these equations more concrete by considering Jacobi fields. For a Jacobi
field J along a unit speed radial geodesic, γ (r), with J ⊥ γ̇ the fundamental equations are

∂r |J |2 = 2Hessr(J, J )

∂r (Hessr(J, J )) = Hess2r(J, J ) − R(J, ∂r , ∂r , J ).

When considering Jacobi fields in the weighted case, the curvatures sec f appear. Let

R
V
X (U ) = RV (U ) +

(
1

2
LXg(V, V ) + g(X, V )2

)
U
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and R
V
X (U,W ) = g(R

V
X (U ),W ), and for X = ∇ f write R f then we have

∂r

(
e−2 f |J |2

)
= 2e−2 f (

H f r(J, J )
)

∂r
(
H f r(J, J )

) = Hess2r(J, J ) − 2g(∇r, X)g( J̇ , J ) − R∂r
f (J, J )

= (H f r)
2(J, J ) − R

∂r
f (J, J ).

Which now looks even closer to the radial curvature equation (2.5).
Jacobi fields are the variation fields produced by variations of geodesics. So we can think

of Jacobi fields as measuring the rate of the spreading of geodesics and of the fundamental
equations as showing that sectional curvature controls this spreading. Thus, the weighted sec-
tional curvatures control the rate of spreading of geodesics in a weighted sense by controlling
the derivative of e−2 f |J |2 along geodesics.

In the motivation above we have used that X = ∇ f in order to differentiate e−2 f g.
However, many of the arguments we will use only depend on arguing along a fixed geodesic
γ . Along a fixed geodesic γ we can always find an anti-derivative for X by simply defining
fγ (t) = ∫ t

0 g(X, γ̇ )dt.Wecan then stillmake sense of the equations above along γ , replacing
e−2 f with e−2 fγ .

Wehavefirstmotivated the definition of theweighted sectional curvature through the radial
curvature equation because it is closer to the approach of Bakry–Emery and Lichnerowicz
in the Ricci curvature case. We consider the second variation of energy formula in section 5.
The weighted curvature also comes up in considering equations for Killing fields, as we will
show in Sect. 8.

2.3 Relationship to the conformal change

The weighted curvatures are also different from the sectional curvatures of the conformal
metric h = e−2 f g. The formula for the (4, 0)-curvature tensor of h in terms of the curvature
of g is

Rh = e−2 f
(
Rg +

(
Hessg f + d f ⊗ d f − 1

2
|d f |2g

)
◦ g

)

where ◦ denotes the Nomizu–Kulkarni product. We can re-interpreted this formula in the
following way.

Proposition 2.1 Let (M, g) be a Riemannian manifold with f a smooth function on M and
let h = e−2 f g then

(
R
g
)U
f

(V, V ) = e2 f
(
R
h
)V

− f
(U,U ).

In particular,

secgf (U, V ) = e−2 f
(
sech− f (V,U )

)
.

Remark 2.2 This proposition shows that the map (g, f ) → (e−2 f g,− f ) is an involution
on the space of Riemannian metrics with density that preserves the conditions sec f = φ,
sec f ≥ 0 or sec f ≤ 0.
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Proof Let U, V be orthogonal vectors in g. Then we have

e2 f Rh(U, V, V,U ) = R(U, V, V,U ) + Hessg f (U,U )g(V, V ) + Hessg f (V, V )g(U,U )

+ d f (U )2g(V, V ) + d f (V )2g(U,U ) − |d f |2g(U,U )g(V, V )

Which gives us

R
U
f (V, V ) = e2 f

(
Rh(U, V, V,U ) − Hessg f (V, V )h(U,U )

−d f (V )2h(U,U ) + |d f |2g(V, V )h(U,U )
)

= e2 f
(
Rh(U, V, V,U ) − Hessh f (V, V )h(U,U ) + d f (V )2h(U,U )

)

= e2 f
(
R
V
− f (U,U )

)
.

where we have used the formula for the Hessian under the change of metrics

Hessh f (U, V ) = Hessg f (U, V ) + 2d f (U )d f (V ) − |d f |2g
��

3 Constant curvature

In this section we establish that our definitions of constant sectional curvature characterize
natural canonical Riemannian manifolds with density in dimension larger than two.

First we consider the case secX = ψ for some function ψ . In dimension two we always
have sec = φ and so secX = ψ if and only if X is a conformal field. An obvious example in
higher dimensions is a constant curvature metric with X a conformal field. It is, in fact easy
to see from Schur’s lemma that these are the only examples.

Proposition 3.1 Suppose that (Mn, g) has n > 2. There is a vector field X on (M, g) such
that secX = ψ for some function ψ : M → R if and only if (M, g) is a space of constant
curvature and X is a conformal field on (M, g). Moreover, ifψ = K is constant then either X
is a Killing field or (M, g) is isometric to a domain of Euclidean space and X is a homothetic
field satisfying LX g = Kg.

Proof Let U, V be perpendicular unit vectors in TpM , then

ψ = secUX (V ) = sec(U, V ) + LXg(U,U )

ψ = secVX (U ) = sec(V,U ) + LX g(V, V )

Since sec(U, V ) = sec(V,U ), we have LX g(U,U ) = LX g(V, V ), showing that X is a
conformal field, LX g = φg, φ : M → R. Then, letting {Ei }n−1

i=1 be an orthonormal basis for
the orthogonal complement of U we have

(n − 1)ψ =
n−1∑
i=1

secUX (Ei ) = Ric(U,U ) + (n − 1)φ

So that Ric = (n − 1)(ψ − φ)g. By Schur’s lemma, ψ − φ must be constant, showing the
metric has constant curvature.

This also shows that ψ = K is constant if and only if φ is. If φ is zero, then X is Killing
and (M, g) has constant curvature K . If φ �= 0, then X is a non-Killing homothetic field.
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The existence of such a field implies that (M, g) is isometric to a domain in Euclidean space,
see [18, p. 242]. ��

In the case secX = ψ the same proof gives the following result.

Lemma 3.2 Suppose that (Mn, g) has n > 2 and there is a vector field X on M such
that secX = ψ for some function ψ then (M, g) has constant curvature ρ and X satisfies
LX g + X � ⊗ X � = (ψ − ρ)g.

When X = ∇ f this gives us the following statement from the introduction.

Proposition 3.3 (Mn, g, f ) has n > 2 and sec f = ψ if and only if g and h = e−2 f g have
constant curvature.

Proof g has constant curvature by Lemma 3.2 and from Proposition 2.1, sech− f = ψe−2 f .
Therefore applying Lemma 3.2 to h tells us that h also has constant curvature. Conversely,
if g and h are both constant curvature, the equation for the curvature tensor under conformal
change shows that Hess u is a function times the metric, which implies that sec f = ψ . ��

The conformal changes between Riemannian metrics with constant curvature, are com-
pletely classified in fact they are known in the Einstein case, see [5,19]. The proof of this
fact also gives some more information about the possible functions ψ such that sec f = ψ .
Letting u = e f , from the equation in Lemma 3.2 we haveHess u = (ψ−ρ)ug where ρ is the
curvature of the metric. A lemma of Brinkmann–Tashiro states that if one has a non-constant
solution to Hess u = φg for some function φ, then the metric must be of the form

g = dt2 + (u′(t))2gN
where u is a function of t and gN is some fixed metric. Brinkmann [5] showed that this is
true locally and Tashiro [36] showed it is true globally when the metric is complete, also see
[13,31].

Once we have these coordinates we can compute that Hessu = u′′g where prime denotes
derivatives in the t direction. Sowe have that u is a solution to u′′ = (ψ −ρ)u. Differentiating
this equation gives us u′′′ = (ψu)′ − ρu′. On the other hand the sectional curvature in these
coordinates is given by sec(∂r , X) = − u′′′

u′ . Since ρ is also the sectional curvature these two
equations combine to give us (ψu)′ = 0, i.e. ψ = Ku−1 for some constant K .

In particular, we can see that if sec f = K for a constant K and f is non constant, then K
must be zero. In this case we get the following classification in terms of the curvature ρ.

Example 3.4 Suppose that (Mn, g, f ) has n > 2 and sec f = 0. If f is non-constant, then
after normalizing ρ to be 1, 0, or -1 and possibly re-parametrizating r and rescaling themetric
gN below, the only possibilities are

(1) ρ = 1, g = dr2 + sin2(r)gN , where gN is a metric of constant curvature 1, and
u = cos(r).

(2) ρ = 0, g = dr2 + gN where gN is a flat metric, and u = Ar .
(3) ρ = −1 and either

(a) g = dr2+sinh2(r)gN where gN is ametric of constant curvature 1, and u = cosh(r).
(b) g = dr2 + e2r gN where gN is a flat metric, and u = er .
(c) g = dr2 + cosh2(r)gN where gN is a metric of constant curvature −1, and u =

sinh(r).
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Remark 3.5 These examples already show that there is no obvious Toponogov triangle com-
parison type theorem for the conditions sec f ≥ 0 or ≤ 0 as the hemisphere and hyperbolic
space both admit densities with constant zero curvature. It also shows that sec f ≥ 0 or ≤ 0
does not imply a triangle comparison theorem for the metric h = e−2 f g since if g is the
hemisphere then h is the hyperbolic space with the opposite curvature and vice-versa.

4 Conjugate radius estimates

In this section we discuss Jacobi field estimates. First we discuss the Cartan–Hadamard
Theorem and then we prove a theorem for a positive upper bound on weighted curvature.

4.1 Weighted Cartan–Hadamard theorem

The Cartan–Hadamard theorem states that manifolds with non-positive sectional curvature
do not have conjugate points. First we show through an example that this theorem is not true
for secX ≤ 0.

Example 4.1 Hamilton’s cigar metric [12] is a rotationally symmetric metric on R
2 with

Ric + Hess f = 0 and thus has sec f = 0. However, it also has conjugate points. To see this
note that since the metric is simply connected and complete, if it had no conjugate points
it would have a unique geodesic between any two points. Since the cigar is rotationally
symmetric we can write the metric as g = dr2 + φ2(r)dθ2. In the coordinates (r, θ), fix θ0
and consider the geodesic defined for all r ∈ (−∞,∞)

γ (r) =
{

(r, θ0) r ≥ 0
(−r,−θ0) r < 0

.

Then, since the cigar is cylindrical at infinity, there is a universal constant C such that
d(γ (r), γ (−r)) < C , for all r . In particular, for r > C/2 there are two geodesics between
γ (r) and γ (−r), implying the metric has conjugate points.

On the other hand, we show that the stronger condition secX ≤ 0 does imply the non-
existence of conjugate points.

Theorem 4.2 Suppose that a manifold (M, g) supports a vector field such that secX ≤ 0,
then (M, g) has no conjugate points.

Proof Let γ : [0, t0] → M be a unit speed geodesic and J a Jacobi field along γ which is
perpendicular to γ̇ . Let f = fγ be the function fγ (t) = ∫ t

0 gγ (r)(X, γ̇ (r))dr . Then we have

d

dt

(
1

2
e−2 f |J |2

)
= e−2 fγ

(
g

(
J̇ − g(X, γ̇ )J, J

))

and

d

dt

(
g

(
J̇ − g(X, γ̇ )J, J

)) = g( J̈ , J ) + g( J̇ , J̇ )− 1

2
LX g(γ̇ , γ̇ )g(J, J ) − 2g(X, γ̇ )g( J̇ , J )

= −R(J, γ̇ , γ̇ , J ) − 1

2
LX g(γ̇ , γ̇ )g(J, J ) + g( J̇ , J̇ )

−2g(X, γ̇ )g( J̇ , J )
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= −R(J, γ̇ , γ̇ , J ) − 1

2
LX g(γ̇ , γ̇ )g(J, J ) + | J̇ − g(X, γ̇ )J |2

−g(X, γ̇ )2g(J, J )

≥ | J̇ − g(X, γ̇ )J |2 − secγ̇

X (J )|J |2.
Then the assumption secX ≤ 0 gives us that d

dt

(
g

(
J̇ − g(X, γ̇ )J, J

)) ≥ 0. If J (0) = 0,
this implies that g

(
J̇ − g(X, γ̇ )J, J

) ≥ 0, which gives us that d
dt

( 1
2e

−2 f |J |2) ≥ 0. Thus,
the only way J (0) = J (t0) = 0 is if J (t) = 0 for all 0 ≤ t ≤ t0. ��
4.2 Positive upper bound

Now we consider the case secX ≤ K , for a positive constant K . Recall that if Riemannian
manifold satisfies sec ≤ K for some K > 0 then any two conjugate points are distance
greater than or equal to π√

K
apart. We generalize this result to the condition secX ≤ K .

To do so we fix some notation. Given a fixed parametrized geodesic γ we let u = e fγ and
let umax and umin be the maximum and minimum of u on the geodesic. While the function
fγ depends on the parametrization of γ we note that the ratio umin

umax
does not.

Theorem 4.3 If γ is a geodesic such that secX (γ̇ , E) ≤ K for all |E | = 1, E ⊥ γ̇ then the
distance between any two conjugate points of γ is greater than or equal to umin

umax
· π√

k
.

Remark 4.4 We can obtain a different proof of Theorem 4.2 by applying Theorem 4.3 for
K → 0 for a fixed geodesic γ with sec f (γ̇ , E) ≤ 0. In particular, Theorem 4.3 is not true
for secX ≤ K .

Proof of Theorem 4.3 Let J (t) a Jacobi field along γ with J (0) = 0 and let φ =
ln( 12e

−2 fγ |J |2). If J (a) = 0 then φ → −∞ at a. The derivative of φ is

dφ

dt
= 2

(
g( J̇ , J ) − g(X, γ̇ )|J |2)

|J |2
Define λ(t) = 1

2e
2 fγ dφ

dt . Then

dλ

dt
= u2

(
d
dt

(
g( J̇ , J ) − g(X, γ̇ )|J |2) |J |2 − 2

(
g( J̇ , J ) − g(X, γ̇ )

)2
e−2 fγ |J |4

)

= u2
(

| J̇ − g(X, γ̇ )J |2|J |2 − 2
(
g( J̇ − g(X, γ̇ )J, J )

)2 − secγ̇

X (J )|J |4
|J |4

)

≥ −λ2

u2
− Ku2

where we have used the formula

d

dt

(
g

(
J̇ − g(X, γ̇ )J, J

)) ≥ | J̇ − g(X, γ̇ )J |2 − secγ̇

X (J )|J |2

and Cauchy–Schwarz.
We thus have

dλ

dt
≥ −λ2

u2
− Ku2 ≥ − λ2

u2min

− Ku2max.
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We can then get a lower bound for λ in terms of the solution to the corresponding Ricatti

equation, dλ
dt = − λ2

u2min
− Ku2max. This equation can be solved explicitly using separation of

variables and we obtain

λ(t) ≥ (uminumax
√
k) cot

(
umax

√
K

umin
t

)

This shows that λ can not diverge to −∞ for t <
umin
umax

π√
K
, which implies J (t) can not go to

0 for t <
umin
umax

π√
K

��

5 Second variation of energy formula and Synge’s theorem

We now discuss how the weighted curvatures appear in the formula for the second variation
of energy of a path. The energy of a path c : [a, b] → R is

E(c) = 1

2

∫ b

a
|ċ|2dt

where ˙here and below will denote derivative in the t direction. The formula for the second
variation of energy of geodesic is

d2E

ds2
|s=0 =

∫ b

a
|V̇ |2 − R(V, γ̇ , γ̇ , V )dt + g

(
∂2γ̄

∂s2
, γ̇

)∣∣∣∣
b

a

where γ̄ : [a, b]×(−ε, ε) → M is a variation of the geodesic γ (t) = γ̄ (t, 0), V (t) = ∂γ̄
∂s |s=0

is the variation field. The index form is the quantity

I[a,b](V, V ) =
∫ b

a
|V̇ |2 − R(V, γ̇ , γ̇ , V )dt.

Recall from section two that weighted directional curvature operators along γ are

Rγ̇

X (U, V ) = R(U, γ̇ , γ̇ , V ) + 1

2
LX g(γ̇ , γ̇ )g(U, V )

R
γ̇

X (U, V ) = R(U, γ̇ , γ̇ , V ) + 1

2
LX g(γ̇ , γ̇ )g(U, V ) + g(X, γ̇ )2g(U, V ).

and that theweighted sectional curvatures are given by secγ̇X (U ) = Rγ̇

X (U,U ) and secγ̇

X (U ) =
R

γ̇

X (U,U ) where U is a unit vector perpendicular to γ̇ . We can modify the formula for the
index form to involve the weighted directional curvature operators.

Proposition 5.1 For the triple (M, g, X) we have the following formulas for the Index form
along a geodesic γ .

I[a,b](V, V ) =
∫ b

a
|V̇ |2 − Rγ̇

X (V, V ) − 2g(γ̇ , X)g(V, V̇ )dt + g(γ̇ , X)|V |2∣∣ba (5.1)

=
∫ b

a
|V̇ − g(γ̇ , X)V |2 − R

γ̇

X (V, V )dt + g(γ̇ , X)|V |2∣∣ba (5.2)
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Proof To obtain the first formula we write

I[a,b](V, V ) =
∫ b

a
|V̇ |2 − Rγ̇

X (V, V ) + 1

2
LX (γ̇ , γ̇ )|V |2dt

=
∫ b

a
|V̇ |2 − Rγ̇

X (V, V ) +
(
d

dt
g(γ̇ , X)

)
|V |2dt

=
∫ b

a
|V̇ |2 − Rγ̇

X (V, V ) − g(γ̇ , X)
d

dt
|V |2 + d

dt

(
g(γ̇ , X)|V |2) dt

=
∫ b

a
|V̇ |2 − Rγ̇

X (V, V ) − 2g(γ̇ , X)g(V, V̇ )dt + g(γ̇ , X)|V |2∣∣ba
To incorporate the strongly weighted curvature into the equation we complete the square

|V̇ − g(γ̇ , X)V |2 = |V̇ |2 − 2g(γ̇ , X)g(V, V̇ ) + g(γ̇ , X)2|V |2

to obtain (5.2). ��
Remark 5.2 When X = ∇ f , the weighted sectional curvatures secUf (γ̇ ) and secUf (γ̇ ) also
appear in the second variation formula for the weighted energy at a weighted geodesic, see
[27,29].

Our first application of these formulas will be to generalize Synge’s theorem to the
weighted setting. We have the following lemma for parallel fields around closed geodes-
ics.

Lemma 5.3 Let (M, g, X) be a Riemannian manifold equipped with a smooth vector field
X which contains a closed geodesic γ which supports a unit parallel field perpendicular to
γ̇ . If either secX > 0, or X = ∇ f and sec f > 0, then there is smooth closed curve which is
homotopic to γ and has shorter length.

Proof First consider the case secX > 0. For a parallel field V along a geodesic (5.1) implies

d2E

ds2
|s=0 = −

∫ b

a
Rγ̇

X (V, V )dt + g(γ̇ , X)|ba + g

(
∂2γ̄

∂s2
, γ̇

)∣∣∣∣
b

a
.

If the geodesic is closed then the boundary terms cancel and from secX > 0 we obtain

d2E

ds2
|s=0 = −

∫ b

a
Rγ̇

X (V, V )dt < 0

Which shows that the closed curve obtained from the variation has smaller length than the
original closed geodesic.

When X = ∇ f and sec f > 0, let Y = e f V , then

Ẏ = g(X, γ̇ )e f V = g(X, γ̇ )Y

Applying (5.2) to the variation field Y we also get that the boundary terms cancel and we
obtain

d2E

ds2
|s=0 = −

∫ b

a
R

γ̇

X (Y, Y )dt < 0

Again showing that there is a closed curve with smaller length. ��
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The proof of Synge’s theorem now goes exactly as in the classical case.

Theorem 5.4 (Synge’sTheorem). Suppose that M is a compactmanifold supporting a vector
field X such that either secX > 0, or X = ∇ f and sec f > 0, then

(1) If M is even dimensional and orientable, then M is simply connected.
(2) If M is odd-dimensional, then M is orientable

Proof The argument of Synge proceeds by contradiction and shows that if the topological
conclusions do not hold then there is a closed geodesic with a parallel field which minimizes
length in its homotopy class, see e.g. Theorem 26 of [33]. Applying Lemma 5.3 then gives
the desired contradiction in the weighted setting. ��

6 Diameter estimate

Now we prove the diameter estimate in the introduction. We could give a proof of the result
using the traditional second variation of energy argument and the formula from the previous
section. However, we will give a quicker proof using the Bochner formula. From formula
(2.2) above we have

∂r (�Xr) = −|Hessr |2 − RicX (∂r , ∂r ).

We can modify this equation to obtain an equation for Ric−(n−1)
X in the following way:

Lemma 6.1 Let γ be a geodesic and let v = e
fγ
n−1 . Then

∂r (v
2�Xr) ≤ −v2

(�Xr)2

n − 1
− v2Ric−(n−1)

X (∂r , ∂r )

Proof We have

∂r (v
2�Xr) =

(
−|Hessr |2 − RicX (∂r , ∂r ) + 2∂r f

n − 1
�Xr

)
v2

≤
(

− (�r)2

n − 1
+ 2∂r f

n − 1
�Xr − RicX (∂r , ∂r )

)
v2

=
(

− (�Xr)2

n − 1
− Ric−(n−1)

X (∂r , ∂r )

)
v2

��
This now gives us Theorem 1.6.

Proof of Theorem 1.6 Let γ (r) be a minimizing unit speed geodesic and let λ(r) = v2�Xr
n−1 ,

then Lemma 6.1 tells us that

λ̇ ≤ −λ2

v2
− kv2

when Ric−(n−1)
X ≥ (n − 1)k. Let vmax and vmin be the minimum and maximum of v. Then

we have

λ̇ ≤ − λ2

v2max
− kv2min
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This implies by the Ricatti comparison that

λ(t) ≤ vminvmax
√
k cot

(
vmin

vmax

√
kt

)
.

Since the right hand side goes to −∞ at t0 = vmax
vmin

· π√
k
, λ must go to −∞ at some earlier

time, meaning the geodesic will not be minimizing past t0. ��

7 Pinching

In this section we present the proof of Theorem 1.5. What we will show is that the conjugate
radius and second variation estimates we already have combined with classical methods give
a proof that any such manifold is a homotopy sphere. We will go into less detail in many of
the arguments in this section and instead reference the textbooks [11,17,33].

For submanifolds A and B in M define the path space as

A,B(M) = {γ : [0, 1] → M, γ (0) = A, γ (1) = B}
We consider the Energy E : A,B(M) → R and variation fields tangent to A and B at the
end points. The critical points are then the geodesics perpendicular to A and B and we say
that the index of such a geodesic is ≥ k if there is a k-dimensional space of variation fields
along the geodesic which have negative second variation. The first step in the proof is that
the diameter estimate in the previous section can be improved to an index estimate in the
case of a sectional curvature bound.

Lemma 7.1 Suppose that sec f ≥ k, then if γ is a geodesic of length longer than umax
umin

· π√
k

than the index of γ is greater than or equal to (n − 1).

Proof Along a geodesic γ : [0, l] → M with a proper variation, V , the second variation
formula (5.2) becomes

d2E

ds2
|s=0 =

∫ l

0
|V̇ − g(γ̇ , X)V |2 − R

γ̇

X (V, V )dt

Choose E to be a unit length parallel field along γ such that E ⊥ γ̇ , let φ(t) be a function
such that φ(0) = 0 and φ(l) = 0, and let V = φe f E . Then we have

V̇ − g(γ̇ , X)V = φ̇e f E

Plugging V into the second variation formula then gives

d2E

ds2
|s=0 =

∫ l

0
e2 f

(
(φ̇)2 − φ2R

γ̇

X (V, V )
)
dt

= −
∫ l

0
e2 f

(
φ̈φ + 2 ḟ φ̇φ + φ2R

γ̇

X (V, V )
)
dt

≤ −
∫ l

0
e2 f φ

(
φ̈ + 2 ḟ φ̇ + kφ

)
dt

Let ψ be the solution to

ψ̈ + 2 ḟ ψ̇ + kψ = 0 ψ(0) = 0 ψ̇(0) = 1.
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and let L be the smallest positive number such thatψ(L) = 0. If we show that L ≤ umax
umin

· π√
k

then this will imply the result since we can then construct (n− 1) linearly independent fields

along γ with d2E
ds2

|s=0 ≤ 0 by taking the fields V as above and defining φ = ψ on [0, L] and
φ(t) = 0 for t ∈

[
L , umax

umin
· π√

k

]
.

To see that L ≤ umax
umin

· π√
k
, let λ = e2 f φ̇

φ
. Then a simple calculation shows that

λ̇ = −λ2

u2
− ku2

The Ricatti comparison applied as in the proof of Theorem 1.6 then gives the result ��
This index estimate gives the following generalization of a sphere theorem of Berger [2]

which is Theorem 33 in [33].

Theorem 7.2 If a compact Riemannian manifold has sec f ≥ k and

inj(M, g) ≥ umax

umin

π

2
√
k

Then M is a homotopy sphere.

Proof Under the hypothesis, every geodesic loop γ such that γ (0) = γ (l) = p must have
length greater than or equal to umax

umin

π

2
√
k
. Then Lemma 7.1 implies that every geodesic in

p,p has index greater than or equal to (n−1). This then implies that M is (n−1) connected
and thus a homotopy sphere see Theorems 32 and 33 of [33] along with Theorem 2.5.16 of
[17]. ��

This shows that the key to proving a sphere theorem is to prove an injectivity radius
estimate. In the even dimensional case an injectivity radius estimate follows from Theorem
4.3 and Lemma 5.3.

Theorem 7.3 Suppose that M is a compact even dimensional simply connected manifold
such that 0 ≤ sec f ≤ L then inj(M, g) ≥ umin

umax

π√
L
.

Proof Suppose that inj(M, g) <
umin
umax

π√
L
. Then from Theorem 4.3 the conjugate radius is

larger than the injectivity radius. This tells us that there is a closed geodesic of length 1
2 injM .

From the proof of Synge’s theorem, when the manifold is orientable and even-dimensional
it is possible to construct a parallel field along the geodesic and from Lemma 5.3 there is
a variation which decreases the length of this closed curve. However, it is possible to show
that this leads to conjugate points of smaller distance apart, a contradiction, see the proof of
Theorem 30 of [33]. ��

The odd dimensional case is more difficult where the injectivity radius estimate is due to
Klingenberg in the classical case.However, fromwhatwe have already proved,Klingenberg’s
arguments carry over to the weighted setting. First we have the homotopy lemma.

Lemma 7.4 (Klingenberg’s homotopy lemma). Suppose that a Riemannianmanifold (M, g)
has the property that no geodesic segment of length less than π contains a conjugate point.
Suppose that p, q ∈ M such that p and q are joined by two distinct geodesics γ0 and γ1
which are homotopic. Then there exists a curve in the homotopy αt0 such that

length(αt0) ≥ 2π − min{length(γi )}
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Proof This is usually stated with the conjugate point estimate replaced with the condition
sec ≤ 1. However, as is pointed out in 2.6.5 of [17], the lemma holds with the same proof in
this generality. ��

Now we can prove the injectivity radius estimate in all dimensions.

Theorem 7.5 Suppose that (M, g, f ) is complete simply connected and satisfies

1

4

(
umax

umin

)2

< L ≤ sec f ≤
(
umin

umax

)2

then inj(M, g) ≥ π

Proof Since sec f ≤
(
umin
umax

)2
Theorem 4.3 shows that the conjugate radius is less than

or equal to π so that we can apply the homotopy lemma. On the other hand, from 7.1,

sec f > 1
4

(
umax
umin

)2
implies that any geodesic of length longer than π

2 has index greater than

or equal to 2. These are the only two elements about curvature used in the proof of the
injectivity radius estimate of Klingenberg, see for example the proof of Proposition 3.1 on
page 276 of [11]. ��

The proof of Theorem 1.5 now follows as Theorems 7.5 and 7.2 showing the manifold is
a homotopy sphere.

8 Killing fields

In this section we augment the previous considerations involving Jacobi fields and the second
variation of energy formula by showing that the weighted sectional curvatures also come up
naturally in formulas for Killing fields. Recall that for a Killing field V on a Riemannian
manifold (M, g) we have the following.

1

2
∇ (|V |2) = −∇V V (8.1)

1

2
Hess

(|V |2) (Y, Y ) = |∇Y V |2 − R(Y, V, V, Y ) (8.2)

Now suppose we have a smooth manifold with smooth density (M, g, f ) and consider the
function

h = 1

2
e−2 f |V |2.

then we have the following formulas.

Lemma 8.1 Let Y be a tangent vector, then

∇h = −e−2 f (∇V V + |V |2∇ f
)

Hessh(Y, Y ) = −2d f ⊗ dh(Y, Y ) + |∇Y (e− f V )|2
−e−2 f (

R(V, Y, Y, V ) + |V |2Hess f (Y, Y ) + |V |2d f (Y )2
)

Proof For the first equation, from the product rule we have

dh = e−2 f
(

−|V |2d f + d

(
1

2
|V |2

))
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So that

dh(Y ) = −e−2 f (
g(∇V V, Y ) + g(∇ f, Y )|V |2)

Differentiating this equation then gives us

Hessh = e−2 f
(
2|V |2d f ⊗ d f − 2d

(
1

2
|V |2

)
⊗ d f − 2d f ⊗ d

(
1

2
|V |2

)
− |V |2Hess f

+ Hess

(
1

2
|V |2

))
.

Plugging in (8.1) and (8.2) gives us

Hessh(Y, Y ) = e−2 f (
2|V |2g(∇ f, Y )2 + 4g(∇ f, Y )g(∇V V, Y ) + |∇Y V |2

−R(Y, V, V, Y ) − |V |2Hess f (Y, Y )
)

= |∇Y (e− f V )|2 − e−2 f (R(Y, V, V, Y ) + |V |2Hess f (Y, Y ))

+ e−2 f (|V |2g(∇ f, Y )2 + 2g(∇ f, Y )g(∇V V, Y )).

Then we also have

d f ⊗ dh(Y, Y ) = −e−2 f g(∇ f, Y )
(
g(∇V V, Y ) + g(∇ f, Y )|V |2)

= −e−2 f (
g(∇ f, Y )g(∇V V, Y ) + g(∇ f, Y )2|V |2)

which tells us that

2e−2 f g(∇ f, Y )g(∇V V, Y ) = −2d f ⊗ dh(Y, Y ) − 2e−2 f g(∇ f, Y )2|V |2.
Plugging this in to the original gives

Hessh(Y, Y ) + 2d f ⊗ dh(Y, Y )

= |∇Y (e− f V )|2 − e−2 f (
R(Y, V, V, Y ) + |V |2Hess f (Y, Y ) + |V |2g(∇ f, Y )2

)
��

Theorem 8.2 Suppose (M, g) is a compact even dimensional manifold, if there is a function
f such that sec f > 0 then every Killing field has a zero.

Proof The argument is by contradiction. If there is a vector field V which does not have a
zero then the function h has a non-zero minimum at a point p. At p, we then have dh = 0
which implies from the previous lemma that

g(∇V V, Y ) = −g(∇ f, Y )|V |2 ∀Y ∈ TpM

In particular, setting Y = V and using the skew-symmetry of ∇V we obtain g(∇ f, V ) = 0
at p.

Consider the skew symmetric endomorphism on A : TpM → TpM given by

A(w) = ∇wV + g(w, V )∇ f − g(w,∇ f )V

Then, using that V ⊥ ∇ f at p we can see that V |p is in the null space of A as

A(V |p) = (∇V V + |V |2∇ f )|p = ∇h|p = 0

If the dimension of the manifold is even, then we know that A has another zero eigenvector
for A which is perpendicular to V , call it w. Then we have

0 = A(w) = ∇wV − g(w,∇ f )V
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Which implies that

∇w(e− f V ) = e− f A(w) = 0

Plugging this into the formula for the Hessian of h in the previous lemma gives us

Hessh(w,w) = −e−2 f (
R(w, V, V, w) + |V |2Hess f (w,w) + |V |2g(∇ f, w)2

)

The assumption sec f > 0 then shows that Hessh(w,w) < 0, which is a contradiction to p
being a minimum. ��
Acknowledgments The author would like to thank Guofang Wei, Peter Petersen, and Frank Morgan for
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References

1. Bakry, D., Émery,M.: Diffusions hypercontractives. In: Séminaire de probabilités, XIX, 1983/84, Lecture
Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985) (French)

2. Berger, M.: Sur certaines variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris 247, 1165–
1168 (1958). (French)

3. Berger, M.: Les variétés Riemanniennes (1/4)-pincées. Ann. Scuola Norm. Sup. Pisa. 14(3), 161–170
(1960). (French). MR0140054 (25 #3478)

4. Berger, M.: Trois remarques sur les variétés riemanniennes à courbure positive. C. R. Acad. Sci. Paris
Sér. A-B 263, A76–A78 (1966)

5. Brinkmann, H.W.: Einstein spaces which are mapped conformally on each other. Math. Ann. 94(1),
119–145 (1925)

6. Chang, S.-Y.A., Gursky, M.J., Yang, P.: Conformal invariants associated to a measure. Proc. Natl. Acad.
Sci. USA 103(8), 2535–2540 (2006)

7. Chang, S.-Y.A., Gursky,M.J., Yang, P.: Conformal invariants associated to ameasure: conformally covari-
ant operators. Pac. J. Math. 253(1), 37–56 (2011)

8. Corwin, I., Hoffman, N., Hurder, S., Sesum, V., Xu, Y.: Differential geometry of manifolds with density.
Rose-Hulman Und. Math. J. 7(1), article 2 (2006)

9. Corwin, I., Morgan, F.: The Gauss–Bonnet formula on surfaces with densities. Involve 4(2), 199–202
(2011)

10. Croke, C.B., Schroeder, V.: The fundamental group of compact manifolds without conjugate points.
Comment. Math. Helv. 61(1), 161–175 (1986)

11. Carmo, M.P. do: Riemannian Geometry, Mathematics: Theory & Applications. Birkhäuser Boston Inc.,
Boston (1992). Translated from the second Portuguese edition by Francis Flaherty (1992)

12. Hamilton, R.S.: The Ricci flow on surfaces, mathematics and general relativity (Santa Cruz, CA, 1986),
Contemp. Math., vol. 71, Am. Math. Soc. (Providence, RI, 1988), pp. 237–262 (1988)

13. Jauregui, J.L., Wylie, W.: Conformal diffeomorphisms of gradient Ricci solitons and generalized quasi-
Einstein manifolds. J. Geom. Anal. 25(1), 668–708 (2015)

14. Kolesnikov, A.V., Milman, E.: Poincaré and Brunn–Minkowski inequalities on weighted Riemannian
manifolds with boundary. arXiv:1310.2526

15. Kennard, L., Wylie, W.: Positive weighted sectional curvature. arXiv:1410.1558
16. Klingenberg,W.:ÜberRiemannscheMannigfaltigkeitenmit positiverKrümmung.Comment.Math.Helv.

35, 47–54 (1961). (German)
17. Klingenberg, W.: Riemannian Geometry, de Gruyter Studies in Mathematics, vol. 1. Walter de Gruyter

& Co., Berlin (1982)
18. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, vol. I, Wiley Classics Library, Wiley,

New York (1996). Reprint of the 1963 original
19. Kühnel,W., Rademacher, H.-B.: Einstein spaces with a conformal group. ResultsMath. 56(1–4), 421–444

(2009)
20. Lichnerowicz, A.: Variétés riemanniennes à tenseur C non négatif. C. R. Acad. Sci. Paris Sér. A-B 271,

A650–A653 (1970). (French)
21. Lichnerowicz,A.:Variétés kählériennes à première classe deChern non negative et variétés riemanniennes

à courbure de Ricci généralisée non negative. J. Differ. Geom. 6, 47–94 (1971/1972) (French)

123

http://arxiv.org/abs/1310.2526
http://arxiv.org/abs/1410.1558


Geom Dedicata (2015) 178:151–169 169

22. Lott, J.: Some geometric properties of the Bakry–Émery-Ricci tensor. Comment. Math. Helv. 78(4),
865–883 (2003)

23. Lott, J.: Remark about scalar curvature and Riemannian submersions. Proc. Am. Math. Soc. 135(10),
3375–3381 (2007)

24. Milman, E.: Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concen-
tration inequalities in negative dimension. arXiv:1409.4109

25. Ovidiu, M., Jiaping, w: Analysis of weighted Laplacian and applications to Ricci solitons. Comm. Anal.
Geom. 20(1), 55–94 (2012)

26. Morgan, F.: Manifolds with density. Notices Am. Math. Soc. 52(8), 853–858 (2005)
27. Morgan, F.: Myers’ theorem with density. Kodai Math. J. 29(3), 455–461 (2006)
28. Morgan, F.: Geometric Measure Theory, 4th edn. Elsevier/Academic Press, Amsterdam (2009)
29. Morgan, F.: Manifolds with density and Perelman’s proof of the Poincaré conjecture. Am. Math. Mon.

116(2), 134–142 (2009)
30. Ohta, S.: (K, N)-convexity and the curvature-dimension condition for negative N. arXiv:1310.7993
31. Brad, O., Dennis, S.: The Schwarzian derivative and conformal mapping of Riemannian manifolds. Duke

Math. J. 67(1), 57–99 (1992)
32. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.

arXiv:math.DG/0211159
33. Petersen, P.: Riemannian Geometry. Graduate Texts in Mathematics, vol. 171, 2nd edn. Springer, New

York (2006)
34. Qian, Z.: Estimates for weighted volumes and applications. Quart. J. Math. Oxf. Ser. 48(2), 235–242

(1997)
35. Synge, J.L.: On the connectivity of spaces of positive curvature. Quart. J. Math. 7, 316–320 (1936)
36. Tashiro, Y.: Complete Riemannianmanifolds and some vector fields. Trans. Am.Math. Soc. 117, 251–275

(1965)
37. Wei, G., Wylie, W.: Comparison geometry for the Bakry–Emery Ricci tensor. J. Differ. Geom. 83(2),

377–405 (2009)
38. Wylie, W.: Some curvature pinching results for Riemannian manifolds with density. arXiv:1501.06079

123

http://arxiv.org/abs/1409.4109
http://arxiv.org/abs/1310.7993
http://arxiv.org/abs/math.DG/0211159
http://arxiv.org/abs/1501.06079

	Sectional curvature for Riemannian manifolds  with density
	Abstract
	1 Introduction
	2 Motivation and the fundamental equations
	2.1 Ricci for manifolds with density
	2.2 The radial curvature equation
	2.3 Relationship to the conformal change

	3 Constant curvature
	4 Conjugate radius estimates
	4.1 Weighted Cartan--Hadamard theorem
	4.2 Positive upper bound

	5 Second variation of energy formula and Synge's theorem
	6 Diameter estimate
	7 Pinching
	8 Killing fields
	Acknowledgments
	References




