
POSITIVE WEIGHTED SECTIONAL CURVATURE

LEE KENNARD AND WILLIAM WYLIE

Abstract. In this paper, we give a new generalization of positive sectional curva-
ture called positive weighted sectional curvature. It depends on a choice of Riemann-
ian metric and a smooth vector field. We give several simple examples of Riemannian
metrics which do not have positive sectional curvature but support a vector field that
gives them positive weighted curvature. On the other hand, we generalize a number
of the foundational results for compact manifolds with positive sectional curvature
to positive weighted curvature. In particular, we prove generalizations of Weinstein’s
theorem, O’Neill’s formula for submersions, Frankel’s theorem, and Wilking’s con-
nectedness lemma. As applications of these results, we recover weighted versions of
topological classification results of Grove–Searle and Wilking for manifolds of high
symmetry rank and positive curvature.

Understanding Riemannian manifolds with positive sectional curvature is a deep
and notoriously difficult problem in Riemannian geometry. A common approach in
mathematics to such problems is to generalize it to a more flexible one and study this
generalization with the hope that it will shed light on the harder original problem.
Indeed, there are a number of generalizations of positive sectional curvature that
have been studied. The most obvious is non-negative sectional curvature, but other
conditions such as quasi-positive or almost positive curvature have been studied in
the literature (see [Zil07, KT14] and references therein)

In this paper we propose a different approach to generalizing positive curvature
that depends on choosing a positive, smooth density function, denoted by e−f , or a
smooth vector field X . Our motivation for considering such a generalization is the
corresponding theory of Ricci curvature for manifolds with density, which was studied
by Lichnerowicz [Lic70, Lic72] and was later generalized and popularized by Bakry–

Emery and their collaborators [BÉ85]. There are too many recent results in this area
to reference all of them here, but some that are more relevant to this article are
[Lot03, Mor05, Mor09b, MW12, WW09]. Also see Chapter 18 of [Mor09a] and the
references therein.

For a triple (Mn, g, X), where (M, g) is a Riemannian manifold and X is a smooth
vector field, the m–Bakry–Emery Ricci tensor is

RicmX = Ric+
1

2
LXg −

X♯ ⊗X♯

m
,
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where m is a constant that is also allowed to be infinite, in which case we write
Ric∞X = RicX = Ric+1

2
LXg. For a manifold with density, we set X = ∇f and write

Ricmf = Ric+Hessf − df⊗df
m

.
The Bakry–Emery Ricci tensors come up in many areas of geometry and analysis

including optimal transport [LV09, Stu06a, Stu06b, vRS05], the isoperimetric inequal-
ity [Mor05], and the Ricci flow [Per]. Our definition of positive weighted sectional
curvature, which looks similar to the Bakry–Emery Ricci tensors, is the following.

Definition. A Riemannian manifold (M, g) equipped with a vector field X has pos-
itive weighted sectional curvature if for every point p ∈ M , every 2-plane σ ⊆ TpM ,
and every unit vector V ∈ σ,

• sec(σ) + 1
2
(LXg)(V, V ) > 0, or

• X = ∇f and sec(σ) + Hessf(V, V ) + df(V )2 > 0 for some function f .

Note that a Riemannian manifold with positive sectional curvature admits positive
weighted sectional curvature, where X is chosen to be zero. This converse to this
statement does not hold, as we show by example in Propositions 2.11 and 2.16. For
additional examples that further illustrate the difference between these notions, we
refer to Section 2.

This definition is motivated by earlier work of the second author [Wyl15] where gen-
eralizations of classical results such as the classification of constant curvature spaces,
the theorems of Cartan–Hadamard, Synge, and Bonnet–Myers, and the (homeomor-
phic) quarter-pinched sphere theorem are proven for manifolds with density.

There are a number of reasons why positive weighted sectional curvature is a natural
generalization of positive sectional curvature. We will discuss this in more detail in
Section 1. For example, we observe in Section 1 that the following low-dimensional
result holds (see Theorem 1.1 and the following remarks). It follows from earlier work
of the second author [Wyl08, Wyl15].

Theorem A. Suppose M is a compact manifold of dimension two or three. If M
admits a metric and a vector field with positive weighted sectional curvature, then M
is diffeomorphic to a spherical space form.

This raises the following motivating question in higher dimensions.

Motivating Question. If (Mn, g, X) is compact with positive weighted curvature,
does M admit a metric of positive sectional curvature?

Theorem A shows the answer is “yes” in dimension 2 and 3. On the other hand,
we show there are complete metrics with density on R × T n with positive weighted
sectional curvature. By a theorem of Gromoll–Meyer [GM69], R×T n does not admit
a metric of positive curvature, so the answer is “no” in the complete case.

We approach this question by considering spaces with a high amount of symmetry.
Since the 1990s, when Grove popularized the approach, quite a lot of powerful ma-
chinery has been developed for studying manifolds with positive curvature through
symmetry. See the survey articles [Wil07, Gro09, Zil14] for details as well as the many
applications.
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A first consideration is that a given vector field X may not be invariant under
the isometries of g. In Section 3, we deal with this issue by showing that, given a
triple (M, g,X) with positive weighted curvature and a compact group of isometries G

acting on (M, g), it is always possible to change X to X̃ which is invariant under G so

that (M, g, X̃) has positive weighted sectional curvature. The fact that we can always
assume that the density is invariant under a fixed compact subgroup of isometries will
be a key observation in most of our results. In fact, it immediately gives the following
result in the homogeneous case (see Proposition 3.7).

Theorem B. If a compact, homogeneous Riemannian manifold (M, g) supports a
gradient field X = ∇f such that (M, g,X) has positive weighted curvature, then
(M, g) has positive sectional curvature.

Simple examples show that this proposition is not true if the manifold is not com-
pact (see Example 2.2). In Section 2, we also give examples of cohomogeneity one
metrics on spheres and projective spaces that have positive weighted sectional curva-
ture but not positive sectional curvature, so the homogeneous assumption cannot be
weakened.

Another way to quantify that a Riemannian manifold has a large amount of sym-
metry is the symmetry rank, which is the largest dimension of a torus which acts ef-
fectively on M by isometries. Our main result regarding symmetry rank and positive
weighted sectional curvature is an extension of the maximal symmetry rank theorem
of Grove–Searle [GS94] to positive weighted sectional curvature (see Theorem 7.1).

Theorem C (Maximal symmetry rank theorem). Let (Mn, g, X) be closed with pos-
itive weighted sectional curvature. If T r is a torus acting effectively by isometries on
M , then r ≤

⌊
n+1
2

⌋
. Moreover, if equality holds and M is simply connected, then M

is homeomorphic to Sn or C Pn/2 .

In higher dimensions, Wilking has shown one can assume less symmetry and still
obtain a homotopy classification [Wil03, Theorem 2]. We also give an extension of
this result (see Theorem 7.3).

Theorem D (Half-maximal symmetry rank theorem). Let (Mn, g, X) be closed and
simply connected with positive weighted sectional curvature. If M admits an effective,
isometric torus action of rank r ≥ n

4
+ log2 n, then M is homeomorphic to Sn or

tangentially homotopy equivalent to C Pn/2 .

Theorems C and D show that the answer to our motivating question is “yes” (at
least up to homeomorphism or homotopy) in the case of high enough symmetry rank.
On the other hand, our results are slightly weaker than the results in the unweighted
setting. We discuss this further in Sections 7 and 8.

There are two key tools used in the proofs of Theorems C and D. The first is an
extension of Berger’s theorem (Corollary 5.3) to the weighted case. The proof follows
as in [GS94] and makes use of the O’Neill formula in the weighted case (Theorem 4.1).
The second main tool is a generalization of Wilking’s connectedness lemma [Wil03,
Theorem 2.1] to positive weighted sectional curvature (see Theorem 6.4).
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Theorem E (Wilking’s connectedness lemma). Let (Mn, g, X) be closed with positive
weighted sectional curvature.

(1) If X is tangent to Nn−k, a closed, totally geodesic, embedded submanifold of
M , then the inclusion N →M is (n− 2k + 1)–connected.

(2) If X and Nn−k are as above, and if G acts isometrically on M , fixes N point-
wise, and has principal orbits of dimension δ, then the inclusion N → M is
(n− 2k + 1 + δ)–connected.

(3) IfX is tangent to Nn−k1
1 and Nn−k2

2 , a pair of closed, totally geodesic, embedded
submanifolds with k1 ≤ k2, then N1 ∩N2 → N2 is (n− k1 − k2)–connected.

The only assumption in Theorem E not needed in the unweighted version is that X
be tangent to the submanifolds. This of course is true in the unweighted setting where
X = 0. In the applications, this extra assumption holds since the submanifolds we
apply the result to will be fixed-point sets of isometries and X will be invariant under
these actions (see Corollary 6.2 and the following discussion). The proof of Theorem
E follows from Wilking’s arguments in [Wil03] using the second variation formula for
the weighted curvatures derived in [Wyl15] in place of the classical one.

This paper is organized as follows. In Sections 1 and 2, we recall the notion of
weighted sectional curvature from [Wyl15], define positive weighted sectional cur-
vature, survey its basic properties (including Theorem A), and construct a number
of examples. In Sections 3–6, we establish these properties and use them to prove
Theorem B as well as generalizations of the O’Neill formulas, Weinstein’s theorem,
and Wilking’s connectedness lemma (Theorem E). In Section 7, we use these tools to
prove Theorems C and D. In Section 8, we discuss future directions.

Acknowledgements. We would like to thank Karsten Grove, Frank Morgan, Guo-
fang Wei, Dmytro Yeroshkin, and Wolfgang Ziller for helpful suggestions and dis-
cussions. The first author is partially supported by NSF grants DMS-1045292 and
DMS-1404670. The second author is partially supported by a grant from the Simons
Foundation (#355608, William Wylie).

1. Definitions and Motivation

In this section, we fix some notation and go into more detail about the motivation
for the definition of positive weighted sectional curvature. At the end of this section
(see Subsection 1.3), we address the fact that weighted sectional curvature is not
simply a function of 2–planes in the way that sectional curvature is, and we discuss
a symmetrized version of weighted sectional curvature which is.

1.1. Definition of positive weighted sectional curvature. First we recall some
notation from [Wyl15]. For a Riemannian manifold (M, g) and a vector V on M , we
will call the symmetric (1, 1)–tensor RV , given by

RV (U) = R(U, V )V = ∇U∇V V −∇V∇UV −∇[U,V ]V,
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the directional curvature operator in the direction of V . Given a smooth vector fieldX ,
the weighted directional curvature operator in the direction of V is another symmetric
(1, 1)–tensor,

RV
X = RV +

1

2
(LXg)(V, V )id,

where id is the identity operator. The strongly weighted directional curvature operator
in the direction of V is defined as

R
V

X = RV
X + g(X, V )2id.

Given an orthonormal pair (U, V ) of vectors in TpM for some p ∈M , the sectional
curvature sec(U, V ) of the plane spanned by U and V is, by definition, sec(U, V ) =
g(RV (U), U). In the weighted cases, we similarly define

secVX(U) = g(RV
X(U), U) = sec(V, U) +

1

2
(LXg)(V, V ),

secVX(U) = g(R
V

X(U), U) = secVX(U) + g(X, V )2.

We say that secX ≥ λ if secVX(U) ≥ λ for every orthonormal pair (V, U), or equiva-
lently if all of the eigenvalues of RV

X are at least λ for every unit vector V . We define
the condition secX ≥ λ in the analogous way. Note that secVX(U) ≥ secVX(U), so that
secX ≥ λ implies secX ≥ λ.

In terms of this notation we can then rephrase the definition of positive weighted
sectional curvature.

Definition. A Riemannian manifold (M, g) equipped with a vector field X has pos-
itive weighted sectional curvature if

• secX > 0, or
• X = ∇f and secf > 0 for some function f .

Note that, unlike sec(U, V ), the weighted sectional curvatures are not symmetric in
U and V . This may at first seem unnatural, but it is necessary if we want the weighted
sectional curvatures to agree with the Bakry–Emery Ricci curvatures in dimension 2
as the Bakry–Emery Ricci tensors of a surface with density will generally have two
different eigenvalues. See Section 1.3 for a discussion of a symmetrized version.

Also note that secVX and secVX average to Bakry–Emery Ricci curvatures in the
following sense. Let {Ei}

n−1
i=1 be an orthonormal basis of the orthogonal complement

of V , then

Ric(n−1)X(V, V ) =
n−1∑

i=1

secVX(Ei)(1.1)

Ric
−(n−1)
(n−1)X(V, V ) =

n−1∑

i=1

secVX(Ei)(1.2)

In particular, for surfaces, secX ≥ λ is equivalent to RicX ≥ λ and similarly for secX
and Ric−1

X . The curvature Ric
−(n−1)
(n−1)X is an example of Bakry–Emery Ricci curvature

with negative m which has been studied recently in [KM, Oht].
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1.2. Properties of positive weighted sectional curvature. Now that we have
introduced the main equations involving weighted sectional curvature, we summarize
some of properties that the condition of positive weighted sectional curvature shares
with positive sectional curvature. We then give a basic outline of how these facts lead
to the proof of Theorems C and D.

First, positive weighted sectional curvature is preserved under covering maps. Namely
if (M, g,X) has positive weighted sectional curvature and M̃ is a cover of M , then

(M̃, g̃, X̃) has positive weighted sectional curvature where g̃ and X̃ are the pullbacks
of g and X respectively under the covering map.

A second property of positive weighted sectional curvature is that the fundamental
group is finite in the compact case. Indeed, this follows from [Wyl08, Theorem 1.1] and
[Wyl15, Theorem 1.14] by using the fact that positive weighted sectional curvature
lifts to covers:

Theorem 1.1. Let (M, g) be a complete Riemannian manifold.

• If there exists a vector field X such that RicX > λ > 0, or

• if M is compact and there is a function f such that Ric
−(n−1)
f > λ > 0,

then π1(M) is finite.

This theorem immediately implies the classification of compact 2– and 3–dimensional
manifolds with positive weighted sectional curvature stated in Theorem A. Indeed,
this follows in dimension two from the classification of surfaces and in dimension three
from the Ricci flow proof of the Poincaré conjecture.

We remark that, for positive Ricci curvature, the finiteness of fundamental group
follows from the Bonnet–Myers’ diameter estimate. There is no diameter estimate for
the weighted curvatures as there are complete non-compact examples with secf >
λ > 0 (see Example 2.2).

A third property of positive weighted sectional curvature is that the vector field X
can always be chosen so that it is invariant under a fixed compact group of isometries.
We interpret this as a shared property with positive sectional curvature since the zero
vector field is always invariant. Specifically we have:

Corollary 1.2. If (M, g,X) has positive weighted sectional curvature, and if G is a
compact subgroup of the isometry group of (M, g), then X can be replaced by a G–

invariant vector field X̃ such that (M, g, X̃) has positive weighted sectional curvature.

WhenM is compact, the isometry group is compact, hence this corollary applies in
this case where G is the whole isometry group. As we mentioned in the introduction,
reducing to the invariant case will be key in most of our results. Corollary 1.2 follows
immediately from Lemmas 3.3 and 3.5 below.

A fourth property of positive weighted sectional curvature is that Riemannian sub-
mersions preserve it in the following sense:

Corollary 1.3. Let π : (M, g) → (B, h) be a Riemannian submersion. Let X be a
vector field X onM that descends to a well defined vector field π∗X on B. If (M, g,X)
has positive weighted sectional curvature, then so does (B, h, π∗X).
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This follows immediately from a generalization of O’Neill’s formulas proved below
(Theorem 4.1). We also obtain from O’Neill’s formulas that Cheeger deformations
preserve positive weighted sectional curvature (Lemma 4.3).

Corollary 1.3 implies the following: If (M, g,X) is compact with positive weighted
sectional curvature and G is a closed subgroup of the isometry group that acts freely
on M , then M/G admits positive weighted sectional curvature. Indeed, by Corollary
1.2 we can modify X so that it is G–invariant and so descends to a vector field on
M/G via the quotient map π : M → M/G. It follows that M/G equipped with
the vector field π∗X has positive weighted sectional curvature by Corollary 1.3. We
implicitly use this fact in the proof of Berger’s theorem (see Corollary 5.3).

Finally, a crucial property of positive weighted sectional curvature is that Synge-
type arguments for positive sectional curvature generalize to the weighted setting.
This follows from studying a second variation formula for energy of geodesics that
was derived in [Wyl15]. Given a variation γ : [a, b] × (−ε, ε) → M of a geodesic
γ = γ(·, 0), let V = ∂γ

∂s

∣∣
s=0

denote the variation vector field along γ. The second
variation of energy is given by

d2

ds2

∣∣∣∣
t=0

E(γs) = I(V, V ) + g

(
∂2γ

∂s2

)∣∣∣∣
t=b

t=a

,

where I(V, V ) is the index form of γ. The usual formula for the index form is

I(V, V ) =

∫ b

a

(
|V ′|2 − Rγ′

(V, V )
)
dt.

In terms of the weighted directional curvature operators, the index form can be re-
written as follows (see [Wyl15, Section 5]):

I(V, V ) =

∫ b

a

(
|V ′|2 −Rγ′

X(V, V )− 2g(γ′, X)g(V, V ′)
)
dt+ g (γ′, X) |V |2

∣∣t=b

t=a
(1.3)

=

∫ b

a

(
|V ′ − g(γ′, X)V |2 −R

γ′

X(V, V )
)
dt + g (γ′, X) |V |2

∣∣t=b

t=a
(1.4)

It may not be immediately apparent why these formulas are natural, but they do
allow us to generalize Synge-type arguments using the following.

Lemma 1.4. Fix a triple (M, g,X). Let γ : [a, b] → M be a geodesic on M , and let
Y be a unit-length, parallel vector field along and orthogonal to γ.

(1) If secX > 0, then the variation γs(t) = exp(sY ) of γ satisfies

d2

ds2

∣∣∣∣
s=0

E(γs) < g
(
γ′(t), Xγ(t)

)∣∣t=b

t=a
.

(2) If X = ∇f and secf > 0, then the variation γs(t) = exp(sefY ) of γ satisfies

d2

ds2

∣∣∣∣
s=0

E(γs) < ef(γ(t))g
(
γ′(t), Xγ(t)

)∣∣t=b

t=a
.
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This lemma is used in Sections 5 and 6 to generalize theorems of Weinstein, Berger,
Synge, and Frankel, as well as Wilking’s connectedness lemma. Once we have these
results, it is not hard to see the how to generalize the proofs of Theorems C and D
to the weighted setting. We indicate briefly how the arguments go.

The proofs proceed by induction on the dimension n, the base cases n ∈ {2, 3}
being handled by the classification of simply connected, compact manifolds in these
dimensions. If a torus acts effectively on M , which has positive weighted sectional
curvature, then we obtain a fixed point set N of lower dimension by Berger’s the-
orem. The fixed point set of a subgroup of isometries is always a totally geodesic
submanifold, and since we can assume X is invariant under the group, we also obtain
that X is tangent to N . It follows immediately that N with restricted vector field X
also has positive weighted sectional curvature. Finally, the torus action restricts to N ,
so it might follow by induction on the dimension of the manifold that N satisfies the
conclusion of the theorem. If the induction hypothesis does not apply, the codimen-
sion of N is small and other arguments are used to again show that N satisfies the
conclusion of the theorem. By applying Wilking’s connectedness lemma, the topology
of M is recovered from the topology of N .

1.3. Symmetrized weighted sectional curvature. Unlike sectional curvature, the
weighted sectional curvatures do not define a function of 2–planes. In this subsection,
we define a symmetrized version that does. We also compare the notions of sectional
curvature and symmetrized weighted sectional curvature.

Given a vector field X on a Riemannian manifold M , secX can be regarded as a
function secX(σ, V ) of (σ, V ), where σ ⊆ TpM is a 2–plane and V is a unit vector in
σ. To evaluate secX(σ, V ), choose either of the two unit vectors in σ orthogonal to V ,
call it U , and evaluate secVX(U).

Note that the unit circle S1(σ) in σ is defined by the metric, so it makes sense to
average over unit vectors eiθ ↔ V ∈ S1(σ). We denote this by

sym secX(σ) =
1

2π

∫ 2π

0

secX(σ, e
iθ)dθ.

One can similarly define sym secX . One appealing aspect of this curvature quantity
is that it is the same kind of object as sec, a function on two–planes.

This definition was motivated by a suggestion of Guofang Wei, who suggested
looking at the quantity

secVX(U) + secUX(V ).

Note that 1
2

(
secVX(U) + secUX(V )

)
equals sym secX and likewise in the strongly weighted

case.
We analyze the conditions sym secX > 0 and sym secX > 0 in dimension two. First,

it is clear that in any dimension

secX > 0 ⇒ sym secX > 0
⇓ ⇓

secX > 0 ⇒ sym secX > 0
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Second, in dimension 2, sym secf = scal
2

+ ∆f . This is the same as the weighted
Gauss curvature studied in [CHH+06, CM11], which contain proofs that the Gauss–
Bonnet theorems hold for this weighted curvature. In particular, we have the following
(compare [CHH+06, Proposition 5.3]):

Theorem 1.5 (Gauss–Bonnet). If M2 is orientable, then
∫
M
sym secX = 2πχ(M).

This gives the following generalization of one case of Theorem A, which implies
that a 2–dimensional, compact manifold M that admits secX > 0 for some vector
field X is diffeomorphic to a spherical space form..

Corollary 1.6. If M2 is compact and admits a metric and vector field X with
sym secX > 0, then M2 is diffeomorphic to a spherical space form.

On the other hand, the torus T 2, while it does not admit sym secX > 0, does admit
a metric with sym secX > 0. To see this equip the torus with a flat metric and a
unit-length Killing field X , then we have

sym secX = 0 + 0 +
1

2π

∫ 2π

0

g
(
X, eiθ

)2
dθ = 1.

In fact, this example immediately generalizes as follows:

Proposition 1.7. If (N, g) is a Riemannian manifold with positive sectional curva-
ture, then S1×N admits a metric and a vector field X such that sym secX > 0.

Proof. Let g be the product metric, and let X denote the unit-length Killing field
tangent to the circle factor. If σ is a two-plane tangent to N , then

sym secX(σ) ≥ secgN (σ) > 0.

If σ is a two-plane not contained in the tangent space to N , then

sym secX(σ) ≥
1

2
|projσ(X)|2 > 0,

where projσ denotes the projection onto σ. �
This raises the following question.

Question 1.8. Does the torus admit secX > 0 or sym secf > 0? More generally are
there compact manifolds with secX > 0 or sym secf > 0 and infinite fundamental
group?

We point out that Gauss–Bonnet type arguments do not seem to give a different
proof that any compact surface with density with secf > 0 is a sphere. Indeed, if we
trace secX , we obtain

scal +div(X) + |X|2.

The integral of this is 4πχ(M) +
∫
M
|X|2d volg, which is not a topological quantity.

We also note that the Gauss-Bonnet theorem gives interesting information about
other inequalities involving curvature. First we consider a positive lower bound.
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Proposition 1.9. Let (M, g) be a compact surface with sym secX ≥ 1. The area of
M is at most 4π. Moreover, if secX ≥ 1 and the area of M is 4π then (M, g) is the
round sphere and X is a Killing field.

Proof. We apply the discussion above to the universal cover M̃ of M , endowed with
the pulled back metric g̃ and vector field X̃ . It follows that χ(M̃) > 0, so that

χ(M̃) = 2 and area(M) ≤ area(M̃) ≤ 4π. Moreover, if area(M) = 4π, then both of
these inequalities are equalities. In particular, π1(M) is trivial and secX̃ = RicX̃ = g̃,

so that (M, g,X) = (M̃, g̃, X̃) is a compact, two-dimensional Ricci soliton. A result
of Chen, Lu, and Tian [CLT06] then shows thatM has constant curvature 1 and that
X is a Killing field. Since M is simply connected, this proves the proposition. �

We can also consider the case of negative curvature in dimension 2. It was shown
in [Wyl15] that if a compact manifold has secX ≤ 0 then the universal cover is
diffeomorphic to Euclidean space, showing that a compact surface admits secX ≤ 0
if and only if it is not the sphere or real projective space. In fact, the Gauss–Bonnet
argument improves this result for surfaces as it shows that the conclusion holds if
sym secX ≤ 0. Moreover, it also shows that if a metric on the torus supports a vector
field with sym secX ≤ 0 then the metric is flat and X is Killing. In particular the
2-torus has no metric with density on it with sym secX < 0.

The discussion above, along with the work of Corwin and Morgan [CM11] certainly
shows that the study of the symmetrized weighted sectional curvature is warranted.
In fact, the results in Section 4 of this paper about Riemannian submersions and
Cheeger deformation have analogues for the symmetrized curvatures with the same
proofs. On the other hand, there does not seem to be a good second variation formula
for the symmetrized curvatures which can give us a version of Lemma 1.4. Note that
the unsymmetrized curvatures also appear in the second variation of the weighted
distance, see [Mor06, Mor09b]. Without some kind of second variation formula for
the symmetrized curvatures, it seems unlikely that the other results of this paper
can be generalized to the symmetrized case or that many of the facts for surfaces
mentioned above can be generalized to higher dimensions.

2. Examples

In this section, we discuss a number of examples of metrics with positive weighted
curvature, including some which do not have positive sectional curvature. As a warm-
up we first consider the case of products.

Definition 2.1. Given (M1, g1, X1) and (M2, g2, X2) where (Mi, gi) are Riemannian
manifolds andXi are smooth vector fields, the product of (M1, g1, X1) and (M2, g2, X2)
is the triple (M1 ×M2, g1 + g2, X1 +X2).

A basic fact about positive sectional curvature is that it is not preserved by taking
products, as the sectional curvature of a plane spanned by vectors in each factor
is zero. Indeed, one of the most famous open problems in Riemannian geometry is
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the Hopf conjecture which states that S2× S2 does not admit any metric of positive
sectional curvature. In the weighted case, there are noncompact examples of products
which have positive weighted sectional curvature.

Example 2.2. We define the 1-dimensional Gaussian as the real line R with coordinate
x, standard metric g = dx2, and vector field X = 1

2
∇(x2) = x d

dx
. This triple has

secX = 1. If we take the product of two 1-dimensional Gaussians we obtain a 2-
dimensional Gaussian. That is, we obtain R2 with the Euclidean metric and vector
field X = ∇f where f(A) = 1

2
|A|2. This triple still has secX = 1. Moreover, taking

further products we obtain the n-dimensional Gaussian as the product of n one-
dimensional Gaussians all of which have secX = 1.

On the other hand, it is easy to see that such examples cannot exist in the compact
case.

Proposition 2.3. No product of the form (M1 ×M2, g1 + g2, X1 + X2) with one of
the Mi compact has positive weighted sectional curvature.

Proof. Let M1 be the compact factor and suppose first that secX > 0. Consider the
“vertizontal” curvature given by Y tangent to M1 and U tangent to M2,

secX(Y, U) = sec(Y, U) +
1

2
LXg(Y, Y ) =

1

2
LX1

g1(Y, Y )

This shows that if secX > 0, then 1
2
LX1

g1 > 0. This is impossible if M1 is compact
by the divergence theorem as tr (LX1

g) = div(X1).
The case where secf > 0 is analogous. In that case we obtain that the function u1 =

ef1 has Hessg1u1 > 0 on M1, which is again impossible on a compact manifold. �
This shows that the Hopf conjecture is also an interesting for weighted sectional

curvature.

Question 2.4 (Weighted Hopf conjecture). Does S2× S2 admit a metric and vector
field with positive weighted sectional curvature?

In the next few sections, we investigate examples with positive weighted sectional
curvature using the simple construction of warped products over a one-dimensional
base. As we can see even in the case of products, it is easier to construct non-compact
examples than compact ones, so we will investigate the non-compact case first.

2.1. Noncompact Examples. A warped product metric over a 1–dimensional base
is a metric of the form g = dr2+φ2(r)gN where N is an (n−1)–dimensional manifold.
Up to rescaling φ and the fiber metric gN and re-parametrizing r there are three
possibilities for the topology of complete metrics of this form:

(1) If φ(r) > 0 for r ∈ R and (N, gN) is complete, then g gives a complete metric
on R × N . If φ is also periodic, then we can take the quotient a get a metric
on S1×N .

(2) If φ(r) > 0 for r ∈ (0,∞) and φ is an odd function with φ′(0) = 1, and if
(N, gN) is a round sphere of constant curvature 1, then g defines a complete
rotationally symmetric metric on Rn
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(3) If φ(r) > 0 for r ∈ (0, R) and φ is an odd function at 0 and R with φ′(0) = 1
and φ′(R) = −1, and if (N, gN) is a round sphere of constant curvature 1,
then g defines a complete rotationally symmetric metric on Sn.

For Y, Z tangent to gN , we have the following well known formulas for the curvature
operator of a one-dimensional warped product,

R(∂r ∧ Y ) = −
φ′′

φ
∂r ∧ Y

R(Y ∧ Z) = RN (Y ∧ Z)−

(
φ′

φ

)2

Y ∧ Z

where RN denotes the curvature operator of N . We will be interested in lower bounds
on weighted curvature of the warped product. All of our examples will also have the
property that X = ∇f , so we focus only on this case. The following lemma simplifies
the problem of proving such lower bounds for warped product metrics over a one-
dimensional base.

Lemma 2.5. Let dr2+φ2(r)gN be a warped product metric, and assume f is a smooth
function that only depends on r. The weighted curvature secf ≥ λ if and only if

λ ≤ sec∂rf (Y ) = −
φ′′

φ
+ f ′′,

λ ≤ secYf (∂r) = −
φ′′

φ
+ f ′φ

′

φ
, and

λ ≤ secYf (Z) =
secgN (Y, Z)− (φ′)2

φ2
+ f ′φ

′

φ
,

for all orthonormal pairs (Y, Z), where Y and Z are tangent to N .
Similarly, secf ≥ λ if and only if these three inequalities hold with f ′ replaced by

u′/u and f ′′ replaced by u′′/u, where u = ef .

This lemma implies that one can show secf ≥ λ for these metrics by plugging in
“test pairs” of the form (∂r, Y ), (Y, ∂r), and (Y, Z), where Y and Z are tangent to
N . In particular, if secgN is bounded from below, then proving secf ≥ λ reduces to
showing three inequalities involving the functions φ and f .

Proof. As the proof is similar, we omit the proof in the strongly weighted case. Let
U = a∂r + Y and V = b∂r + Z be an arbitrary orthonormal pair of vectors, where Y
and Z are tangent to N . By orthonormality, |Y ∧ Z|2 = 1 − a2 − b2, so a2 + b2 ≤ 1.
Since ∂r ∧ (aZ − bY ) and Y ∧ Z are eigenvalues of the curvature operator, we have

sec(U, V ) = 〈R(U ∧ V ), U ∧ V 〉

= −
φ′′

φ
|∂r ∧ (aZ − bY )|2 +

(
secN(Y, Z)− (φ′)2

φ2

)
|Y ∧ Z|2

= −
φ′′

φ

(
a2 + b2

)
+

(
secN (Y, Z)− (φ′)2

φ2

)(
1− a2 − b2

)
.
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Next, we calculate

Hess f(U, U)|V |2 = a2f ′′ + (1− a2)f ′φ
′

φ
.

Observe that secUf (V ) = sec(U, V )+Hess f(U, U)|V |2 is a linear function in the quan-

tities a2 and a2 + b2. Moveover, these quantities vary over a triangle since

0 ≤ a2 ≤ a2 + b2 ≤ 1,

so the minimal (and maximal) values of secUf (V ) occur at one of the three corners.
This proves the lemma since these corners correspond to orthonormal pairs of the
form (∂r, Y ), (Y, ∂r), and (Y, Z). �

As a first application of Lemma 2.5 we consider the problem of prescribing positive
weighted sectional curvature locally on a subset of the round sphere.

Proposition 2.6. Let M be a round sphere of constant curvature 1 and H+ an open
round hemisphere in M . For any λ ∈ R, there is a density on H+ with secf ≥ λ and
there is no density defined on an open set containing the closure of H+ with secf > 1.

Proof. First we prove the non-existence. It suffices to show that a geodesic ball B
of radius π

2
+ ε cannot admit a density f such that secf > 1. On B, we can write

the round metric as the warped product dr2 + sin2(r)gSn−1, where r ∈
(
0, π

2
+ ε

)
. By

Lemma 3.5 proved in the next section, we can assume that f = f(r). By Lemma
2.5, secf > 1 only if u′

u
cot(r) > 0. However, cot

(
π
2

)
= 0, so the second inequality is

impossible to satisfy.
On the other hand, in order to find a density f with secf ≥ λ, we only need that

f ′′ ≥ λ− 1 and f ′ cot(r) ≥ λ− 1

Such a density exists, e.g., f given by

f(r) = (λ− 1)

∫
tan(x)dx = −(λ− 1) log(cos(r)).

satisfies these properties. Note that in these examples, f blows up at the equator
r = π

2
. �

On the other hand, we note the general fact that every point p in a Riemannian
manifold has a neighborhood U supporting a density such that secf ≥ λ.

Proposition 2.7. Let (M, g) be a Riemannian manifold, p ∈ M , and λ ∈ R. There
is an open set U containing p which supports a density f such that secf ≥ λ on U .

Proof. Let r be the distance function to p. Since Hess r ∼ 1/r as r → 0, there exists
0 < ε < 1 such that rHess r > εg on B(p, ε). Let ρ = inf sec(B(p, ε), g). Define
f = λ−ρ

2ε
r2 . We have that

Hess f =
λ− ρ

ε
dr ⊗ dr +

λ− ρ

ε
rHess r ≥ (λ− ρ)g,

which implies that secf ≥ λ on B(p, ε). �
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Now we come to our first complete example.

Proposition 2.8. Let (N, gN) be a metric of non-negative sectional curvtaure. For
any λ, the metric g = dr2 + e2rgN on R × N admits a density of the form f = f(r)
such that secf ≥ λ. On the other hand, g admits no density of the form f = f(r) with
secf ≥ −1 + ε with ε > 0.

Proof. Set φ(r) = er. Because N has non-negative sectional curvature, Lemma 2.5
implies secf ≥ λ if and only if −1 + u′′

u
≥ λ and −1 + u′

u
≥ λ. This can be achieved

by taking u = eAr for some sufficiently large A ∈ R.
On the other hand, for a general f = f(r), if we have secf ≥ −1+ε, then f satisfies

f ′′(r) ≥ ε and f ′(r) ≥ ε for all r ∈ R. This is impossible. �
Remark 2.9. Gromoll and Meyer [GM69] proved that a non-compact, complete man-
ifold with sec > 0 is diffeomorphic to Euclidean space. These examples show this is
not true for secf > 0. Moreover, Cheeger and Gromoll [CG72] showed that a non-
compact complete manifold with sec ≥ 0 is the normal bundle over a compact totally
geodesic submanifold called a soul. While our examples are topologically R × N , we
note that the cross sections {r0} × N are not geometrically a “soul” as they are not
totally geodesic.

Remark 2.10. If we take gN to be a flat metric, then the metric g = dr2 + e2rgN is
a hyperbolic metric. If we also choose f(r) = r, then we get a density with constant
secf = 0.

2.2. Compact Examples. Now we give examples of rotationally symmetric metrics
on the n–sphere which admit a density f such that secf > 0 but do not have sec ≥ 0.

In general, a rotationally symmetric on the sphere will be of the form g = dr2 +
φ2(r)gSn−1 for r ∈ [0, 2L]. The smoothness conditions for the warping function φ and
density function f are that φ(0) = φ(2L) = 0, φ′(0) = 1, φ′(2L) = −1, φ(even)(0) =
φ(even)(2L) = 0 and f ′(0) = f ′(2L) = 0. Our main construction is contained in the
following proposition.

Proposition 2.11. There are rotationally symmetric metrics on Sn which support a
density f such that secf > 0, but which do not have sec ≥ 0.

Proof. First we define φ(r) = r on [0, π/6] and φ(r) = sin(r) on [π/3, π/2]. On the
interval (π/6, π/3), extend φ smoothly so that φ′′ ≤ 0 and φ′ ≥ 0. Then we reflect
φ across π/2 to obtain a warping function defined on [0, π] that gives a smooth
rotationally symmetric metric on the sphere. Geometrically, this metric consists of
two flat discs connected by a region of positive curvature.

Now define f(r) = 1
2
r2 on [0, π/3] and extend f on (π/3, π/2] so that f ′ > 0 on

(π/3, π/2) and has f (odd)(π/2) = 0 so that f also defines a smooth function when
reflected across π/2.

Now we consider the potential function λf ′′ for a positive constant λ. The table
below shows the values for the eigenvalues of the curvature operator and Hessian of
λf on the different regions
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−φ′′

φ
1−(φ′)2

φ2 λf ′′ λf ′ φ′

φ

[0, π/6] 0 0 λ λ
(π/6, π/3] > 0 > 0 λ ≥ λ
(π/3, π/2] 1 1 λf ′′ ≥ 0

By Lemma 2.5, secf ≥ λ on [0, π/3]. On (π/3, π/2] note that f ′′ < 0 somewhere since
f ′ must decrease from π/3 to 0. However, by choosing λ small enough we can make
1 + λf ′′ ≥ λ on [π/3, π/2], and then we will have secf ≥ λ everywhere.

We have thus constructed examples with secf > 0 but which do not have sec > 0.
Of course, this example does have sec ≥ 0. However, since having secf > 0 is an
open condition we can perturb the metric in an arbitrary small way and still have
secf > 0. This will give metrics with some negative sectional curvatures which still
have secf > 0. �

On the other hand, we note that most rotationally symmetric metrics on the sphere
do not have any density such that secf > 0.

Proposition 2.12. Let g = dr2 + φ2(r)gSn−1, r ∈ [0, 2L], be a metric on Sn

(1) If there is a density f such that secf > 0 then
∫ 2L

0
−φ′′(r)
φ(r)

dr ≥ 0.

(2) If there is a density f such that secf > 0, then φ has a unique critical point
t0. Moreover, at t0, the metric has positive sectional curvature.

Proof. By Lemmas 3.3 and 3.5 we can assume in either case that f is a function of
r. Both results are simple consequences of the equations for curvature. For the first,
we consider the equation

sec∂rf (Y ) =
−φ′′

φ
+ f ′′ > 0.

For f to define a smooth function, we must have f ′(0) = f ′(2L) = 0, so integrating
the equation gives (1). In dimension 2, this is the Gauss–Bonnet Theorem (Theorem
1.5) which we discussed in section 1.3.

For (2), consider a point where φ′(t) = 0. Fix an orthonormal pair of vectors, Y

and Z, at this point that are tangent to N . Since Hess u(Y, Y ) = u′ φ
′

φ
g(Y, Y ) = 0,

the only way secYf (∂r) and secYf (Z) can be positive is if sec(∂r, Y ) and sec(Y, Z) are
positive. It follows that all sectional curvatures are positive at this point. Moreover,
it follows that φ′′(t) < 0 at each critical point t, so there can be at most one critical
point of φ. �
Remark 2.13. Proposition 2.12, part (2), shows that a spherical “dumbell” metric
consisting of two spheres connected by a long neck of non-positive curvature does not
have any density with secf > 0.

Now we consider doubly warped products of the form

g = dr2 + φ2(r)gSk + ψ2(r)gSm r ∈ [0, L].
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These metrics are also cohomogeneity one with G = O(k + 1) × O(m + 1), so by
Lemmas 3.3 and 3.5 we can assume that the density is of the form f = f(r). We also
have

Hess r = φ′φgSk + ψ′ψgSm.
So

Hess f = f ′′dr2 + f ′φ′φgSk + f ′ψ′ψgSm.
In order for f to be C2 we thus need f ′(0) = f ′(L) = 0.

We let Y, Z denote vectors in the Sk factor and U, V be vectors in the Sm factor.
The curvature operator in this case is

R(∂r ∧ Y ) = −
φ′′

φ
∂r ∧ Y

R(∂r ∧ U) = −
ψ′′

ψ
∂r ∧ U

R(Y ∧ Z) =
1− (φ′)2

φ2
Y ∧ Z

R(U ∧ V ) =
1− (ψ′)2

ψ2
U ∧ V

R(Y ∧ U) = −
φ′ψ′

φψ
Y ∧ U

This shows that, at a point (r, p, q), there exists a basis {Ei} of the tangent space
such that the following hold:

• The Ei are eigenvectors of Hess f , and
• The Ei ∧ Ej for i < j are eigenvectors of R.

In this setting, we will use the following algebraic lemma to show that certain doubly
warped products on the sphere have positive weighted sectional curvature. The proof
is algebraic and is postponed until the next subsection.

Corollary 2.14. Let (M, g) be a closed Riemannian manifold with non-negative cur-
vature operator R. Let X be a vector field on M . Assume that, for all p ∈ M , the
tangent space at p has a basis {Ei} such that all of the following hold:

• Ei is an eigenvector for LXg with eigenvalue µi for all i,
• Ei ∧ Ej is an eigenvalue for R with eigenvalue λij for all i < j, and
• λij > 0 or min(µi, µj) > 0 for all i < j.

There exists λ > 0 such that (M, g, λX) has positive weighted sectional curvature.

More geometrically, this result allows us to conclude that secλf > 0 by testing this
condition on orthonormal pairs of the form (Ei, Ej) or (Ej, Ei) with i < j.

Proposition 2.15. For any positive integers m and k, there is a doubly warped
product metric on Sk+m+1 of the form g = dr2 + φ2(r)gSk + ψ2(r)gSm with secf > 0
but which does not have sec ≥ 0.
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Proof. Let r vary over the interval [0, π/2], choose φ and f as in the proof of Propo-
sition 2.11, and set ψ(r) = cos(r). The proof of Proposition 2.11 shows that we can
scale f so that the weighted sectional curvatures of the pairs involving ∂r and Y are
positive. For this argument, we apply Corollary 2.14.

Choose an orthonormal basis {Ei}
k+m
i=0 for the tangent space such with E0 = ∂r, with

E1, . . . , Ek tangent to Sk, and with Ek+1, . . . , Ek+m tangent to Sm. This basis satisfies
the first two conditions of Corollary 2.14. It suffices to check the third condition.

Using the expressions above for the curvature operator, all λij > 0, except in the
case where r ∈ [0, π/6] and where Ei and Ej are tangent to the Sk factor. For these
indices, however, µi = Hess f(Ei, Ei) > 0 and µj = Hess f(Ej, Ej) > 0. By Corollary
2.14 we have secλf > 0 for some λ > 0. The fact that we can make sec < 0 for
some two-planes follows for the same reason it was true in the rotationally symmetric
case. �

Applying O’Neill’s formula from Section 4, this also gives us an example on C Pn .

Proposition 2.16. There are cohomogeneity one metrics on C Pn which admit a
density such that secf > 0 but which do not have sec ≥ 0.

Proof. Consider a double warped product metric on the sphere S2n+1 of the form

g = dr2 + φ2(r)gS2n−1 + ψ2(r)dθ2

Consider the Hopf fibration on S2n−1 and write the metric gS2n−1 = k+h where h is the
metric tangent to the Hopf fiber and k is the metric on the orthogonal complement.
Complex multiplication on the S2n−1 and S1 factors induces a free isometric action
on g and the quotient is C Pn . The quotient map is a Riemannian submersion if we
equip C Pn with the metric

dr2 + φ2(r)k +
(φ(r)ψ(r))2

φ2(r) + ψ2(r)
h

By O’Neill’s formula (Theorem 4.1), we know this metric also has secf > 0. Note
also that if Y is a horizontal vector field in the S2n−1 factor then for r > 0, [∂r, Y ] =
0 which implies that the sectional curvature sec∂rf (Y ) does not change under the
submersion. Since there are curvatures in the doubly warped product of this form
which are negative, we also obtain that the metric on C Pn has some negative sectional
curvatures. �
2.3. Proof of Corollary 2.14. This section is devoted to the proof of Corollary
2.14, which is applied in the previous section. The proof is algebraic and not required
for the rest of the paper, so the reader may choose to skip this subsection. The result
is restated here for convenience:

Corollary (Corollary 2.14). Let (M, g) be a closed Riemannian manifold with non-
negative curvature operator R. Let X be a vector field on M . Assume that, for all
p ∈M , the tangent space at p has a basis {Ei} such that all of the following hold:

• Ei is an eigenvector for LXg with eigenvalue µi for all i,
• Ei ∧ Ej is an eigenvalue for R with eigenvalue λij for all i < j, and
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• λij > 0 or min(µi, µj) > 0 for all i < j.

There exists λ > 0 such that (M, g, λX) has positive weighted sectional curvature.

To prove this result, first note that it suffices to prove that a λ > 0 as in the
conclusion exists at every point in M . It is then straightforward to conclude this
pointwise claim from the following lemma together with the non-negativity of the
curvature operator.

Lemma 2.17. Let (V, 〈·, ·〉) be a finite-dimensional inner product space. Let L and
R be symmetric, linear maps on V and Λ2V , respectively. Assume there exists an
orthonormal eigenbasis {Ei} for L such that {Ei ∧ Ej}i<j is an eigenbasis for R.
Denote the corresponding eigenvalues by µi and λij, respectively. Set λji = λij for
i < j. Considered as a function of orthonormal pairs (Y, Z) in V , the minimum and
maximum values of

S(Y, Z) = 〈R(Y ∧ Z), Y ∧ Z〉+ 〈L(Y ), Y 〉

lie in the set

{λij + µi | i, j distinct} ∪

{
1

2
(λij + λkl + µi + µj) | i, j, k, l distinct

}
.

Proof. Let n = dim(V ). Let Y =
∑
aiEi and Z =

∑
biEi be an orthonormal pair in

V . Observe that

S(Y, Z) =
∑

i<j

λijzij +
∑

i

µixi = S(xi, zij),

where xi = a2i for 1 ≤ i ≤ n, where zij = (aibj − ajbi)
2 for 1 ≤ i < j ≤ n. To simplify

notation later, set zii = 0 and zji = zij for 1 ≤ i < j ≤ n. By orthonormality of
(Y, Z), all of the following hold:

(1) xi ≥ 0 and
∑
xi = 1, hence the vector x = (xi) lies on the standard simplex

∆n−1 ⊆ Rn .

(2) Likewise, z = (zij) lies on the standard simplex ∆(n2)−1 ⊆ Rn(n−1)/2 .
(3) For all 1 ≤ i ≤ n, xi ≤

∑n
j=1 zij .

Hence S(Y, Z) equals S(x, z) for some point (x, z) in the convex polytope C ⊆ Rn ×Rn(n−1)/2 defined by

C =

{
(x, z) ∈ ∆n−1 ×∆(n2)−1 | xi ≤

∑

j

zij for all i

}
.

To prove the lemma, it suffices to show that the function S : C → R has extremal
values in the set described in the conclusion of the lemma.

We prove this claim by induction over n. First, if n = 2, then C = ∆1 ×∆0, so

S(x, z) = λ12 + µ1x1 + µ2x2

has extremal values λ12 + µ1 and λ12 + µ2, as claimed. Assume now that n ≥ 3 and
that the claim holds in dimension n− 1.
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Since C is a convex polytope – i.e., an intersection of half-spaces – and since S is
linear, the extremal values are attained at the corners (or 0–dimensional faces) of C.
We now evaluate S at these corners.

Let (x, z) ∈ C be a corner. There exist 0 ≤ k ≤ n and distinct indices i1, . . . , ik
such that all of the following hold:

(1) (x, z) lies in the interior of a k–dimensional face of ∆n−1 ×∆(n2)−1,
(2) xih =

∑n
j=1 zihj for 1 ≤ h ≤ k, and

(3) xi ≤
∑n

j=1 zij for all 1 ≤ i ≤ n.

Indeed, each corner of C is obtained by intersecting some k–dimensional face of ∆n−1×

∆(n2) with some choice of k hyperplanes xi =
∑

j zij . Recall that a k–dimensional face

of the product is a product of a l–dimensional face with a (k − l)–dimensional face
for some 0 ≤ l ≤ k. Also recall that a k–dimensional face of a standard simplex is
given by a choice of k + 1 indices i0, . . . , ik for which xi0 + . . .+ xik = 1 and all other
xi = 0. Moreover, the interior of this face is the set of such points where, in addition,
each of the xih > 0.

First, suppose that k = 0. In other words, suppose that (x, z) lies on a corner of

∆n−1 ×∆(n2). There exists i and p < q such that xi = 1, zpq = 1, and all other entries
of x and z are zero. By condition (3), i ∈ {p, q}, hence S(x, z) equals λiq + µi or
λpi + µi, as required.

Second, suppose that k ≥ 1 and that there exists ih with xih = 0. By conditions
(1) and (2), zihj = 0 for all j. Hence S(x, z) does not contain any terms with index
ih. The claim follows in this case by the induction hypothesis.

Finally, suppose that k ≥ 1 and xih > 0 for all 1 ≤ h ≤ k. In particular, x does not
lie in a face of dimension less than k − 1. Hence Condition (1) implies that x lies in

the interior of a (k − 1)– or k–dimensional face of ∆n−1, and that z ∈ ∆(n2)−1 lies in
the interior of a 1–dimensional face or a corner, respectively. We consider these cases
separately:

(a) In the first case, there exists i0 6∈ {i1, . . . , ik} such that xi0 > 0 and xi0 +xi1 +
. . .+xik = 1. Moreover, there exists p < q such that zpq = 1 and zrs = 0 for all
(r, s) 6= (p, q). By condition (3), i0 ∈ {p, q} and likewise for all of the distinct
indices i0, i1, . . . , ik. It follows that k cannot be larger than one. Moreover, if
k = 1, then {i0, i1} = {p, q}, so

S(x, z) = λi0i1 + µi0xi0 + µi1xi1 .

Since xi0 and xi1 are positive and sum to one, this quantity is at least λi0i1+µi0

or λi0i1 + µi1 , as required.
(b) In the second case, xi1 + . . . + xik = 1 and there exists p < q and r < s such

that zpq > 0, zrs > 0, and zpq + zrs = 1. By condition (3), ih ∈ {p, q} ∪ {r, s}
for all h, so clearly k ≤ 4. In fact, if k ≥ 3, then there exist ih1

∈ {p, q} and
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ih2
∈ {r, s}, which implies

1 =
k∑

h=1

xih > xih1 + xih2 =
∑

j

zih1 j +
∑

j

zih2 j ≥ zpq + zrs = 1,

a contradiction.
This leaves the possibilities that k = 2 and k = 1. First, suppose k = 1. It

follows that xi1 = 1 and that

S(x, z) = λpqzpq + λrszrs + µi1 .

Hence S(x, z) is bounded between λpq + µi1 and λrs + µi1. Moreover,

1 = xi1 =
∑

j

zi1j ,

so all zij that do not appear in this sum are zero. In particular, i1 ∈ {p, q}
and i1 ∈ {r, s}, so the claim follows in this case.
This leaves the case with k = 2. We start by showing that i1 cannot be in

both {p, q} and {r, s}. Indeed, if it were, then Conditions (1) and (2) imply
that

1 = xi1 + xi2 > xi1 =
∑

j

zi1j ≥ zpq + zrs = 1,

a contradiction. By a similar argument, i2 cannot be in both sets. Condition
(3) implies i1, i2 ∈ {p, q}∪{r, s}. If i1 and i2 lie in different sets, say i1 ∈ {p, q}
and i2 ∈ {r, s}, then Condition (2) further implies that xi1 = zpq and xi2 = zrs,
hence

S(x, z) = (λpq + µi1) zpq + (λrs + µi2) zrs,

so the claim follows in this case. Finally, if i1 and i2 lie in the same set, say
{p, q}, then

S(x, z) = λi1i2zi1i2 + λrszrs + µi1xi1 + µi2xi2 .

Moreover, in this case, condition (2) implies xi1 = zpq = xi2 , and condition
(1) implies that 1 = xi1 + xi2 = 2zpq, hence all four variables are equal to 1/2.
This concludes the proof of the claim.

This shows in all cases that the extremal vaues of S : C → R are given as in the
conclusion of the lemma. As established at the beginning of the proof, the same holds
of S. �

Regarding the proof of Lemma 2.17, we note that the point (x, z) with x1 = x2 =
z12 = z34 =

1
2
and all other entries zero lies in the set C. Moreover, since the λij and

µi are arbitrary, we have provided the optimal solution the the optimization problem
for the function S : C → R. On the other hand, S(Y, Z) actually equals S(x, z) for
some (x, z) ∈ C0, where C0 is a proper subset of C. Indeed, given the definitions of
xi and zij as in the proof, it is straightforward to check that

(4) zij ≤ xi + xj for all i < j.
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Note that the point (x, z) with x1 = x2 = z12 = z34 = 1
2
is not in the smaller set

C0. This suggests that the Lemma 2.17 could be improved to state that the optimal
values are of the form λij + µi or λij + µj with i < j. Since this is not needed for our
applications, we do not pursue this here.

3. Averaging the density

In this section, we begin to establish the properties of positive weighted sectional
curvature described in Section 1. Our first consideration is that, in studying manifolds
with density and symmetry, a symmetry of the metric might not be a symmetry of the
density. We prove in this section that this difficulty can be overcome in the compact
case. At the end, we apply these ideas to study weighted curvature properties of
homogeneous metrics.

3.1. Preservation of weighted curvature bounds under averaging. Fix a Rie-
mannian manifold (M, g) and a vector field X on M . Let G be a compact subgroup
of the isometry group, and let dµ denote a unit-volume, bi-invariant measure on G.
Define a new, G–invariant vector field X̄ on M as follows:

X̄p =

∫

G

φ−1
∗ (Xφ(p))dµ,

where we identify the elements φ ∈ G with isometries φ : M → M . In the gradient
case, where X = ∇f , we similarly define f̄(p) =

∫
G
f(φ(p))dµ.

As a basic observation note that, for a fixed vector field V in TpM ,

g
(
X̄, V

)
= g

(∫

G

φ−1
∗ (X)dµ, V

)
=

∫

G

g
(
φ−1
∗ (X), V

)
dµ,

DV

(∫

G

g
(
φ−1
∗ (X), V

)
dµ

)
=

∫

G

g
(
∇V φ

−1
∗ (X), V

)
dµ+

∫

G

g
(
φ−1
∗ (X),∇V V

)
dµ.

This follows from the fact that all of the functions involved are smooth, the linearity
of the integral, and the fact that G as a compact space admits a finite partition of
unity. Similar identities for passing integrals over G past a derivative also hold for the
same reasons. We will use these facts repeatedly below with out further comment.

Now we claim the following:

Lemma 3.1. With the notation above, for any vector field X and any V ∈ TpM ,

(LX̄g)(V, V ) =

∫

G

(LXg)(φ∗V, φ∗V )dµ
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Proof. This follows from a straightforward calculation:

g
(
∇V X̄, V

)
= DV g

(
X̄, V

)
− g

(
X̄,∇V V

)

= DV g

(∫

G

φ−1
∗ (X)dµ, V

)
− g

(∫

G

φ−1
∗ (X)dµ,∇V V

)

=

∫

G

DV g
(
φ−1
∗ (X), V

)
dµ−

∫

G

g
(
φ−1
∗ (X),∇V V

)
dµ

=

∫

G

g
(
∇V

(
φ−1
∗ (X)

)
, V

)
dµ

=

∫

G

g (∇φ∗VX, φ∗V ) dµ. �
For a function we also have the following.

Lemma 3.2. With the notation above, for any function f ,

∇f̄ = ∇f

Hess f̄ =

∫

G

Hess f(φ∗V, φ∗V )dµ

Proof. First note that the second equation follows from the first combined with
Lemma 3.1 along with the fact that

Hess f =
1

2
L∇fg.

To prove the first equation, let V be a vector field on M , and observe that

g
(
∇f̄ , V

)
= DV

(∫

G

f ◦ φdµ

)
=

∫

G

df(φ∗V )dµ =

∫

G

g
(
φ−1
∗ (∇f), V

)
= g

(
∇f, V

)
.�

Now we are ready to show that the weighted curvatures can be averaged over the
compact group G. First we consider the ∞–cases.

Lemma 3.3. Given a triple (M, g,X) and a compact subgroup G of the isometry
group, the weighted curvatures satisfy

RicX̄(U, V ) =

∫

G

RicX(φ∗U, φ∗V )dµ,

secVX̄(U) =

∫

G

secφ∗V
X (φ∗U)dµ,

where X̄ is the average of X. In particular, if secX ≥ λ, then secX̄ ≥ λ where X̄ is
G–invariant.

Remark 3.4. One similarly can draw conclusions about upper bounds and for the
Bakry–Emery Ricci curvature. In addition, analogous statements hold for Ricf and
secf . They follow immediately from Lemmas 3.2 and 3.3 .
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Proof. Using Lemma 3.1 we can see all we need to show is

Ric(U, V ) =

∫

G

Ric(φ∗U, φ∗V )dµ

sec(U, V ) =

∫

G

sec(φ∗U, φ∗V )dµ.

But this just follows from the isometry invariance of the curvature as well as the fact
that dµ has unit volume. �

For the strongly weighted curvatures, averaging the vector field X causes some
issues as the equation contains terms which are quadratic in X . In the gradient case
we can overcome this by changing the form of the potential function. Given m, set
u = e−f/m, then a simple calculation shows that

Hess f −
df ⊗ df

m
= −

mHess u

u

So, we have

Ricmf = Ric−
mHess u

u

and, choosing m = −1,

secVf (U) = sec(V, U) +
Hess u

u
(V, V )

In these cases, it is natural to average the function u. Let ũ(p) =
∫
G
u(φ(p))dµ and

define f̃ = −m log(ũ). Then we have the following Lemma.

Lemma 3.5. Given a triple (M, g, f) and a compact subgroup G of the isometry
group, the weighted curvatures satisfy

ũRicmef (U, V ) =

∫

G

uRicmf (φ∗U, φ∗V )dµ,

ũsecVef (U) =

∫

G

usecφ∗V
f (φ∗U)dµ,

where ũ is the average of u = e−f/m and f̃ = −m log(ũ). In particular, if secf ≥ λ,

then sec ef ≥ λ where f̃ is G–invariant.

Proof. We will discuss the Ricci case and the sectional curvature case will follow from
an analogous argument. We have

uRicmf (V, V ) = uRic(V, V )−mHess u(V, V )
∫

G

uRicmf (φ∗V, φ∗V )dµ =

∫

G

(uRic(φ∗V, φ∗V )−mHess u(φ∗V, φ∗V )) dµ

= ũRic(V, V )−mHess ũ(V, V )

= ũRicmef (V, V )
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To see the final remark note that, if Ricmf ≥ λg, then

Ricmef (U, V ) =

∫
G
uRicmf (φ∗U, φ∗V )dµ

ũ
≥

∫
G
λug(U, V )dµ

ũ
= λg(U, V ),

so Ricmef ≥ λg as well. Similar arguments hold for upper bounds. �
We remind the reader that Lemmas 3.3 and 3.5 immediately imply Corollary 1.2:

If (M, g,X) has positive weighted sectional curvature and G is a compact subgroup
of the isometry group of (M, g), then there exists a G–invariant vector field X̃ such

that (M, g, X̃) has positive weighted sectional curvature. Indeed, if secX > 0, then
one can replace X by its average X̄ over the G–orbits. If X = ∇f and secf > 0,

then one can replace X by X̃ = ∇f̃ , where f̃ = log(ũ) and where ũ is the average of
u = ef over the G–orbits.

Remark 3.6. Note that Lemma 3.5 does not clearly extend to the non-gradient case,
since there is no globally defined function u to average. We can still average over
X , but only one side of the curvature bound is preserved. To see this note that the
strongly weighted curvatures satisfy

secVX̄(U) =

∫

G

secφ∗V
X (φ∗U)dµ+

(∫

G

g (X, φ∗V ) dµ

)2

−

∫

G

g (X, φ∗V )2 dµ.

In particular, by the Cauchy–Schwarz inequality,

secVX̄(U) ≤

∫

G

secφ∗V
X (φ∗U)dµ,

so upper bounds on strongly weighted curvatures are preserved by averaging the den-
sity. Similar statements hold in the gradient case. For the m–Bakry–Emery curvature,
we similarly have

RicmX̄(V, V ) =

∫

G

RicmX(φ∗V, φ∗V )dµ−
1

m

[(∫

G

g (X, φ∗V )

)2

−

∫

G

g (X, φ∗V )2
]
.

3.2. Homogeneous metrics. Now we apply averaging the density to the special case
of homogeneous metrics. Homogeneous Riemannian manifolds with positive sectional
curvature are classified Wallach [Wal72] and Bérard-Bergery [BB76]. By averaging
the density, we show here that there are no additional examples in the weighted case
when X = ∇f .

Proposition 3.7. Let (M, g) be a compact homogeneous manifold and let f ∈ C∞(M).

(1) If Ricf ≥ λg or Ricmf ≥ λg, then Ric ≥ λg.
(2) If secf ≥ λg or secf ≥ λg then sec ≥ λg.

Analogous results hold for upper bounds.

This proposition immediately implies Theorem B from the introduction. Indeed, if
(M, g) admits a gradient field X = ∇f with positive weighted sectional curvature,
then secf > 0 and hence this proposition applies.
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Proof. Let G be the isometry group of (M, g). In all cases, we can replace f by a

G–invariant function f̃ such that the f̃–weighted curvatures have the same lower
bounds as the f–weighted curvatures. Since G acts transitively, f̃ is constant, so the
f̃–weighted curvatures are equal to the usual, unweighted curvatures. �

It is not clear whether this fact is also true when the field X is not gradient.
Averaging the field so that it is invariant under the isometries will not necessarily
make the field Killing, but there is one important case where it does.

Proposition 3.8. If a compact Lie group with a bi-invariant metric admits an X
such secX ≥ λ or RicX ≥ λg, then sec ≥ λ or Ric ≥ λg, respectively.

Proof. We can replace X by its average over the left and right actions of G. This
preserves the lower bounds on curvature, and it makes X bi-invariant and hence
a Killing field. Hence LXg = 0, so the weighted curvatures equal the unweighted
curvatures. �

In particular, the previous two propositions have the following corollary.

Corollary 3.9. A compact Lie group with a bi-invariant metric has positive weighted
sectional curvature if and only if it has positive sectional curvature.

In the simplest non-trivial case of a left-invariant metric that is not bi-invariant, a
computation shows that we again do not get new examples.

Proposition 3.10. If a left invariant metric on the Lie group SU(2) supports a vector
field X such that secX ≥ λ or RicX ≥ λg, then sec ≥ λ or Ric ≥ λg, respectively.

Proof. For a left invariant metric on SU(2), choose an orthonormal frame

λ−1
1 X1, λ

−1
2 X2, λ

−1
3 X3

such that [Xi, Xi+1] = 2Xi+2 with indices taken mod 3. It follows that

∇Xi
Xi = 0

∇Xi
Xi+1 =

(
λ2i+2 + λ2i+1 − λ2i

λ2i+2

)
Xi+2

∇Xi+1
Xi =

(
−λ2i+2 + λ2i+1 − λ2i

λ2i+2

)
Xi+2

Now since SU(2) is compact, we can assume by averaging that X is a left-invariant
vector field, which we will write as

X = a1X1 + a2X2 + a3X3

for constants ai. We have

(LXg)(Xi, Xi) = 2g(∇Xi
X,Xi) = 0

(LXg)(Xi, Xi+1) = g(∇Xi
X,Xi+1) + g(∇Xi+1

X,Xi)

= 2ai+2

(
λ2i − λ2i+1

)
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This shows thatX is not a Killing field in general. However, secX(Xi, Xj) = sec(Xi, Xj),
so if secX ≥ λ then sec(Xi, Xj) ≥ λ. Further computation also shows that the basis
X1 ∧X2, X2 ∧X3, X3 ∧X1 diagonalizes the curvature operator, and thus that all of
the sectional curvatures are bounded by the maximum and minimum curvatures of
the sectional curvatures involving X1, X2, and X3. Thus we actually have sec ≥ λ.
The basis X1, X2, X3 also diagonalizes the Ricci tensor so the statement about Ricci
curvatures follows similarly. �

In general, Proposition 3.7 does not hold in the non-compact case, as we have
already seen in Example 2.2. We can generalize the Gaussian example in the following
simple way:

Example 3.11. Suppose that (M, g) is a simply connected space of non-positive sec-
tional curvature. The distance function to a point squared, d2, is a smooth function.
Moreover, Hess(d2) ≥ 2g. Therefore, if (M, g) has sectional curvature bounded from
below by −K, then, for f = Ad2, we have secf ≥ 2A − K, which we can make
arbitrarily large.

Letting (M, g) in the example be a hyperbolic space gives a noncompact homo-
geneous manifold with positive weighted sectional curvature and negative sectional
curvature. We also note that there are many examples of non-compact homogeneous
Ricci soliton metrics (i.e metrics with RicX = λg) which do not have Ric = λg. Ex-
amples of homogeneous metrics with Ricmf = λg which do not have Ric = λg are also
constructed in [HPW15].

4. Riemannian submersions and Cheeger deformations

We analyze the behavior of the weighted and strongly weighted directional curva-
ture operators under a Riemannian submersion π : M → B. For this, we restrict to
vector fields X on M for which the vector field π∗(X) on B is well defined. Following

Besse [Bes08, Chapter 9], let R, R̂, and Ř denote the curvature tensors of M , the
fibers, and the base, respectively, and let V and H denote the projection maps onto
the vertical and horizontal spaces, respectively.

Theorem 4.1 (O’Neill formulas). Let (M, g) be a closed Riemannian manifold, let π
be a Riemannian submersion with domain M , and let X be a smooth vector field on
M such that the map p 7→ π∗(Xp) is constant along the fibers of π. If Y and Z are
horizontal vector fields and U and V are vertical vector fields on M , then

RV
X(U, U) = R̂V

VX(U, U) + g (TUV, TUV )− g (TUU, TV V )− g (TV V,HX) g(U, U),

RZ
X(Y, Y ) = Řπ∗Z

π∗X
(π∗Y, π∗Y )− 3g(AYZ,AYZ),

and likewise with RX , R̂VX and Řπ∗X replaced by the strongly weighted directional
curvature operators on M , the fibers, and the base, respectively.
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In particular, if (Y, Z) is an orthonormal pair of horizontal vector fields, then

secπ∗Y
π∗X

(π∗Z) = secYX(Z) +
3

4

∣∣[Y, Z]V
∣∣2

and likewise for secX .

Analogous statements hold in the gradient case. There, one assumes that f is a
smooth function on M that is constant along the fibers of π. The function f replaces
X in the above formulas, and the induced map f̄ on the base replaces π∗X . The
gradient case follows from the general case since df̄ and Hess f̄ pull back via π to df
and Hess f , respectively.

As for sectional curvature, the O’Neill formulas show that the base of a Riemannian
submersion inherits lower bounds on weighted or strongly weighted sectional curva-
tures. In particular, if the total space admits a vector field X with positive weighted
sectional curvature such that X descends to a well defined vector field on the base,
then the base too has positive weighted sectional curvature (see Corollary 1.3).

Finally, the vector field X is arbitrary and hence need not be horizontal or vertical.
For example, suppose π is the quotient map by a free, isometric group action. The
vector field X might be an action field (hence vertical), basic (hence horizontal), or
any smooth combination of the two (hence neither).

Proof. Let ĝ and ǧ denote the metrics on the fibers and the base, respectively. First,
the conclusions in the strongly weighted cases follows immediately from the weighted
cases since

g (X, V )2 g (U, U) = ĝ(VX, V )2ĝ(U, U),

g (X,Z)2 g (Y, Y ) = ǧ(π∗X, π∗Z)
2ǧ(π∗Y, π∗Y ).

Second, the weighted cases follow from the unweighted case once we establish that

1

2
(LXg)(V, V )g(U, U) =

1

2
(LVX ĝ)(V, V )ĝ(U, U)− g (TV V,HX) g (U, U) ,

1

2
(LXg)(Z,Z)g(Y, Y ) =

1

2
(Lπ∗X ǧ)(π∗Z, π∗Z)ǧ(π∗Y, π∗Y ).

Indeed these follow from the fact that U is vertical, the fact that Y is horizontal, and
the observations that

1

2
(LXg)(V, V ) = g (∇VX, V ) = g (∇V (VX), V ) + g (∇V (HX), V )

= ĝ
(
∇̂V (VX), V

)
− g (∇V V,HX)

=
1

2
(LVX ĝ)(V, V )− g (TV V,HX)

and

1

2
(LXg)(Z,Z) = g (∇ZX,Z) = ǧ(∇π∗Zπ∗X, π∗Z) =

1

2
(Lπ∗X ǧ)(π∗Z, π∗Z). �
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Regarding the O’Neill formulas for mixed inputs (vertical and horizontal), we re-
mark that one simply obtains weighted versions by adding the appropriate terms from
the definition of RX and RX . The formulas do not simplify as in Theorem 4.1, but
one can still use them. To illustrate this with one easy example, we generalize here
a result of Weinstein [Wei80, Theorem 6.1] to the case of positive weighted sectional
curvature (cf. Florit and Ziller [FZ11] and Chen [Che14]).

Theorem 4.2 (Weinstein). Let π :M → B be Riemannian submersion of closed Rie-
mannian manifolds with totally geodesic fibers. If there exists a function f ∈ C∞(M)
such that secf > 0 on all orthonormal pairs of vectors spanning “vertizontal” planes,
then the fiber dimension is most ρ(dimB), where ρ(n) denotes the maximum number
of linearly independent vector fields on Sn−1.

Note that this reduces to the Weinstein’s result when f = 0. Recall that f ∈
C∞(M) is basic if it is constant along the fibers of π.

Proof. Since the fibers are totally geodesic, the T tensor vanishes. Hence, for any
orthonormal pair (V, Z), where V is vertical and Z is horizontal, the O’Neill formula

R(Z, V, V, Z) = |AZV |2 − |TZU |
2 + g ((∇ZT )V V, Z)

implies
secVf (Z) = |AZV |

2 +Hess f(V, V ) + df(V )2.

At a point p ∈ M where f is maximized, df(V ) = 0 and Hess f(V, V ) ≤ 0 for all V .
Hence, AZV 6= 0 for all vertizontal pairs (V, Z) at p. The proof now proceeds as in
[Wei80] by constructing dim(Vp) linearly independent vectors on the unit sphere in
Hp, where Vp and Hp are the vertical and horizontal spaces at p, respectively. �

Theorem 4.2 relates to a conjecture of Fred Wilhelm, namely, that dim(F ) <
dim(B) for any Riemannian submersion from a manifold M with positive sectional
curvature, where dim(F ) and dim(B) denote the dimensions of the fibers and the base,
respectively. If one only assumes sec > 0 almost everywhere on M , then there are
counterexamples due to Kerin [Ker11]. On the other hand, the above result suggests
that the assumption of positive sectional curvature might be weakened to cover mani-
folds with density. For example, Frankel’s theorem (Theorem 6.1) in the weighted case
implies the following: if M admits a vertical vector field X such that M has positive
weighted sectional curvature, then the conclusion of Wilhelm’s conjecture holds.

As a second application, we discuss Cheeger deformations. These have been used
in multiple constructions of metrics with positive or non-negative sectional curvature
(see Ziller [Zil07] for a survey). Here, we establish the weighted curvature formulas
for the deformed metric in terms of the original. We will use the formulas from this
section in the proof of Theorem E.

The setup involves a Riemannian manifold (M, g), a subgroup G of the isometry
group, a bi-invariant metric Q on G, and a real parameter λ > 0. We are interested in
understanding how the weighted curvatures behave under these peturbations. Hence
we also fix a smooth vector field X on M . We assume that X is G–invariant, which
can be arranged if the subgroup G is compact, e.g., if G is closed and M is compact.
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The new metric on M is denoted by gλ. It is the metric for which the map

π : (G×M,λQ+ g) → (M, gλ)

given by (h, p) 7→ h−1p is a Riemannian submersion. There is a (λQ+ g)–orthogonal
decomposition of T(e,p)(G×M) as

{(Y, Y ∗
p ) | Y ∈ g} ⊕ {(

−|Y ∗
p |

2Y, λ|Y |2Y ∗
p

)
| Y ∈ g}⊕ {(0, Z) | Z ∈ Tp(G · p)⊥}.

Here, and throughout, g = TeG denotes the Lie algebra of G, and Y ∗ denotes the
Killing field associated to Y ∈ g. The first of these summands is the vertical space
V(p,e) = ker(Dπ(e,p)) of the projection π. The last two summands together form the
horizontal space H(e,p) = V⊥

(e,p).

The horizontal lift of Y ∗ ∈ Tp(G · p) ⊆ TpM is

1

|Y ∗
p |

2 + λ|Y |2
(
−|Y ∗

p |
2Y, λ|Y |2Y ∗

p

)
,

and the horizontal lift of Z ∈ Tp(G · p)⊥ ⊆ TpM is (0, Z). Note that |Z|gλ = |Z|g,
while

|Y ∗|2gλ =
λ|Y |2|Y ∗|2

|Y ∗|2 + λ|Y |2
.

As λ→ ∞, |Y ∗|gλ increases and converges to |Y ∗|g, hence |Y ∗|gλ ≤ |Y ∗|. We will use
this in the proof of the connectedness lemma.

Our goal now is to compute the weighted and strongly weighted directional curva-
ture operators of (M, gλ, X) in terms of those of (M, g,X).

Lemma 4.3 (Curvature tensors after Cheeger deformations). Let R = Rg and Rgλ

denote the curvature tensors of (M, g) and (M, gλ), respectively. For vector fields Wi

on M , if W̃i = (W̃G
i , W̃

M
i ) denote the horizontal lifts in G×M , then

gλ
(
(Rgλ)W1

X (W2),W3

)
= λQ

(
(RQ)W̃

G
1 (W̃G

2 ), W̃G
3

)

+g
(
(Rg)

W̃M
1

X (W̃M
2 ), W̃M

3

)

+(λQ+ g)
(
AW̃1

W̃2, AW̃1
W̃2

)
.

In particular, if Z1 and Z2 are vector fields in M that are everywhere orthogonal to
the G–orbits, then

gλ
(
(Rgλ)Z1

X (Z2), Z2

)
≥ g

(
(Rg)Z1

X (Z2), Z2

)
.

If, in addition, (Z1, Z2), forms an orthonormal pair with respect to g (equivalently
with respect to gλ), then

(secgλ)Z1

X (Z2) ≥ (secg)Z1

X (Z2).

Proof. Consider the vector field (0, X) on G×M . It is G–invariant and π∗(0, X) = X ,
where π : (G × M,λQ + g) → (M, gλ) is the Riemannian submersion defining gλ.
The first claim follows directly from the (first) O’Neill formula in the weighted case
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applied to π. The second and third claims follow from the fact that the horizontal lift
of Z ∈ Tp(G · p)⊥ is (0, Z) ∈ T (G×M). �

5. Weinstein’s fixed point theorem and applications

In the next two sections, we demonstrate how Synge-type arguments extend to the
case of positive weighted sectional curvature. The only technical ingredient required
is Lemma 1.4. We first prove Weinstein’s fixed point theorem in the weighted case:

Theorem 5.1 (Weinstein’s fixed point theorem). Let (Mn, g) be a closed, orientable
Riemannian manifold equipped with vector field X such that (M, g,X) has positive
weighted sectional curvature. If F is an isometry of M with no fixed point, then F
reverses orientation if n is even and preserves it if n is odd.

Proof. Corollary 1.2 implies that we may assume without loss of generality that X is
invariant under isometries. In particular, F∗(X) = X .

The proof now proceeds as in Weinstein [Wei68]. Using compactness, choose p ∈M
such that d(p, F (p)) is minimal. Choose a unit-speed, minimizing geodesic γ : [a, b] →
M from p to F (p). As in [Wei68], there exists a special unit-length, parallel vector
field V along γ, and it suffices to show that the index I(V, V ) of γ is negative. One of
the properties of γ is that F∗(γ

′(a)) = γ′(b). By Lemma 1.4, it suffices to show that

g
(
γ′(t), Xc(t)

)∣∣t=b

t=a
=

〈
γ′(b), Xγ(b)

〉
−
〈
γ′(a), Xγ(a)

〉
= 0.

Indeed, this is the case since F carries γ′(a) to γ′(b) and Xγ(a) to XF (γ(a)) = Xγ(b). �
We derive three corollaries of Weinstein’s theorem, all of which are analogues of

what happens in the unweighted case. The first is the textbook application of Wein-
stein’s theorem to prove Synge’s theorem.

Corollary 5.2 (Synge’s theorem). If (Mn, g, X) is closed and has positive weighted
sectional curvature, then

• If n is odd, then M is orientable.
• If n is even and M is orientable, then π1(M) is trivial.

This is proved in [Wyl15], but we indicate another proof based on Weinstein’s
theorem. Depending on whether n is odd or even, one applies Weinstein’s theorem in
the weighted case to the free action of Z2 or π1(M), respectively, on the orientation or
universal cover of M equipped with the pullback metric and vector field or function.
For this, it is important that π1(M) is finite (see Theorem 1.1).

Weinstein’s theorem, together with O’Neill’s formula, also provides another proof
of Berger’s result (see [Ber66, GS94]):

Corollary 5.3 (Berger’s theorem). If (Mn, g, X) is closed and has positive weighted
sectional curvature, then the following hold:

• If n is even, then any Killing field has a zero. Equivalently, any isometric
torus action has a fixed point.
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• If n is odd, any torus acting isometrically on M has a circle orbit. In partic-
ular, there exists a codimension one subtorus that has a fixed point.

We remark that the even-dimensional case is also proved in [Wyl15].

Proof. The equivalence of the conclusions about Killing fields and torus actions is
based on the fact that the isometry group of M is a compact Lie group. Consider an
isometric action on M by a torus T . Without loss of generality, we assume that X
is invariant under the action of T . The conclusion follows by choosing F ∈ T that
generates a dense subgroup of T and applying Weinstein’s theorem to F .

The odd-dimensional case follows from the even-dimensional case and the O’Neill
formula, as proved in Grove and Searle [GS94]). Since the even-dimensional case and
O’Neill’s formula hold in the weighted case, the proof is complete. �

Finally, it was observed in [Ken] that Weinstein’s theorem pairs nicely with a result
of Davis and Weinberger to provide an obstruction to free group actions on positively
curved rational homology spheres of dimension 4k + 1:

Theorem 5.4 (Davis–Weinberger factorization). Let (M4k+1, g, X) be closed with
positive weighted sectional curvature. If the universal cover of M is a rational homol-
ogy sphere, then π1(M) ∼= Z2e × Γ for some odd-order group Γ.

Proof. Since π1(M) is finite (see Theorem 1.1), we may consider the free action of
π1(M) on the universal cover of M , which is a compact, simply connected man-
ifold with the same weighted curvature bound as M . By Weinstein’s theorem in
the weighted case, the action of π1(M) is (rationally) homologically trivial. Since
dim(M) ≡ 1 mod 4 and the surgery semicharacteristic

∑
i≤2k(−1)i dimH i(M ;Q ) is

odd, the factorization of π1(M) follows from Theorem D in [Dav83]. �
6. Frankel’s theorem and Wilking’s connectedness lemma

In this section, we prove generalizations of Frankel’s theorem andWilking’s connect-
edness lemma in the weighted case. Specifically, we assume throughout this section
that (Mn, g, X) is a Riemannian manifold equipped with a vector field X such that
(M, g,X) has positive weighted sectional curvature.

Theorem 6.1 (Frankel). Assume (Mn, g, X) is closed with positive weighted sectional
curvature. Assume N1 and N2 are closed, totally geodesic submanifolds ofM such that
X is tangent to Ni for i ∈ {1, 2}. If dim(N1)+dim(N2) ≥ n, then N1 and N2 intersect.

Before proving this, we record an easy corollary that we will use in the next section.

Corollary 6.2. Let (Mn, g, X) be closed with positive weighted sectional curvature.
Suppose G1 and G2 are subgroups of the isometry group of M , and suppose that N1

and N2 are components of the fixed-point sets of G1 and G2, respectively. If dim(N1)+
dim(N2) ≥ n, then the submanifolds intersect.
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To deduce the corollary, one replaces X by X̃ such that X̃ is invariant under isome-
tries of (M, g) and (M, g, X̃) has positive weighted sectional curvature (see Corollary
1.2). For p ∈ N1, it follows that Xp ∈ (TpM)G1 = TpN1, hence X is tangent to N1 and
likewise for N2. The corollary follows since the Ni are closed and totally geodesic.

Remark 6.3. Note that both Theorem 6.1 and the corollary fail if we remove the
assumption that M is compact. Indeed, consider the flat metric on Euclidean space,
and let f = 1

2
d2, where d is the distance to a fixed point in M . Clearly secVf (U) =

Hess f(V, V ) = 1 for all orthonormal pairs (U, V ), yet any two parallel hyperplanes are
disjoint, closed, totally geodesic, and have dimensions adding up to at least dimM .

In fact, N1 and N2 are fixed-point components of reflection subgroups G1
∼= Z2

and G2
∼= Z2 of the isometry group. However, the subgroup generated by G1 and

G2 is infinite, so we cannot replace X by a G1– and G2–invariant vector field as in
Corollary 1.2 and proceed as in the proof of the corollary.

Proof of Frankel’s theorem. Let M , N1, N2, and X be as in the theorem. We proceed
now as in Frankel [Fra61]. By compactness, there is a minimizing geodesic γ : [a, b] →
M connecting N1 to N2. By the first variation formula, γ is normal to N1 and N2 at
its endpoints. Since X is tangent to N1 and N2,

g
(
γ′(b), Xγ(b)

)
= g

(
γ′(a), Xγ(a)

)
= 0.

Using Lemma 1.4, the rest of the proof is as in the unweighted case. �
Wilking proved a vast generalization of Frankel’s result (see [Wil03, Theorem 2.1]).

The generalization to the weighted case is the following:

Theorem 6.4 (Wilking’s connectedness lemma). Let (Mn, g, X) be closed with pos-
itive weighted sectional curvature.

(1) If X is tangent to Nn−k, a closed, totally geodesic, embedded submanifold of
M , then the inclusion N →M is (n− 2k + 1)–connected.

(2) If X and Nn−k are as above, and if G acts isometrically on M , fixes N point-
wise, and has principal orbits of dimension δ, then the inclusion N → M is
(n− 2k + 1 + δ)–connected.

(3) IfX is tangent to Nn−k1
1 and Nn−k2

2 , a pair of closed, totally geodesic, embedded
submanifolds with k1 ≤ k2, then N1 ∩N2 → N2 is (n− k1 − k2)–connected.

As in the corollary to Frankel’s theorem, this result applies to inclusions of fixed-
point components of isometric group actions.

Proof. The proof in each case proceeds as in Wilking [Wil03, Theorem 2.1], where
the result is reduced to an index estimate. In the first and third cases, this estimate
involves parallel vector fields and hence extends to the weighted case exactly as in
the proof of Frankel’s theorem above in the weighted case.

In the remaining case, the index estimate is a bit more involved, so we repeat it here,
modifying it as necessary to cover the weighted case. The setup in [Wil03] is as follows:
The metric gλ on M is a Cheeger deformation of g, there is a geodesic c : [a, b] →M
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that starts and ends perpendicular to N , and there is a (n− 2k+1+ δ)–dimensional
vector space W of vector fields V along c such that

• V is tangent to N at the endpoints of c,
• V is orthgonal to the G–orbits at all points along c, and
• V ′ = ∇c′V is tangent to the G–orbits at all points.

By the argument in [Wil03], it suffices to show that, for all V ∈ W , there exists λ > 0
such that the index form with respect to gλ of c evaluated on V is negative. We show
this first under the assumption that secX > 0 on M .

By Equation 1.3, the index form can be written as

∫ b

a

(
|V ′|2gλ − (Rgλ)c

′

X(V, V )− 2gλ(c
′, X)gλ(V, V

′)
)
dt+ gλ(c

′, X)|V |2gλ
∣∣t=b

t=a
.

First, we show that the last term in this expression is zero. Without loss of gen-
erality, we may assume that X is G–invariant and hence tangent to N . Since the
G–orbits in N are trivial, X is orthogonal to the orbits. Hence the horizontal lift of
Xc(t) at t ∈ {a, b} is (0, Xc(t)), and

gλ(c
′, X)|

t=b
t=a = g(c′, X)|

t=b
t=a = 0.

Second, the O’Neill formula in the weighted case implies that (Rgλ)c
′

X(V, V ) ≥
Rc′

X(V, V ). Since this lower bound is independent of λ > 0, the proof will be complete
once we show both of the following:

• |V ′|2gλ → 0 as λ→ 0, and
• gλ(c

′, X)gλ(V, V
′) → 0 as λ→ 0.

Indeed, since V ′ is tangent to the G–orbits, |V ′|gλ → 0 as λ→ 0. This proves the first
statement. The second statement follows from the first, together with the estimate

|gλ(c
′, X)||gλ(V, V

′)| ≤ |c′|gλ|X|gλ|V |gλ|V
′|gλ ≤ |c′|g|X|g|V |g|V

′|gλ.

Here, the second inequality follows since Cheeger deformations (weakly) decrease
lengths, i.e., | · |gλ ≤ | · |g for all λ > 0.

This completes the proof if secX > 0. Consider now the case where X = ∇f and
secf > 0. Here, we consider the vector space

Wf = {Y = efV | V ∈ W},

and show that, for all Y ∈ Wf , there exists λ > 0 such that the index Ic(Y, Y ) of Y
along c is negative. Since dim(Wf) = dim(W ), this would complete the proof in this
case. This is easily accomplished by proceeding as in the previous case and using the
alternative formula for the index given in Equation 1.4. �
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7. Torus actions and positive weighted sectional curvaure

Throughout this section, we consider closed Riemannian manifolds (M, g) equipped
with a vector field X such that (M, g,X) has positive weighted sectional curvature.
In addition, we assume a torus T acts isometrically on M . Applying Corollary 1.2, if
necessary, we assume that X is invariant under the torus action.

Our first result is the following generalization of a result of Grove–Searle [GS94]:

Theorem 7.1 (Maximal symmetry rank). Let (Mn, g, X) be closed with positive
weighted sectional curvature. If T r is a torus acting effectively by isometries on M ,
then r ≤

⌊
n+1
2

⌋
. Moreover, if equality holds and M is simply connected, then M is

homeomorphic to Sn or C Pn/2 .

The upper bound on r is sharp and agrees with Grove and Searle’s result. However,
in the unweighted case, Grove and Searle prove an equivariant diffeomorphism classi-
fication when the maximal symmetry rank is achieved. We obtain this weaker rigidity
statement by a different argument that relies on Wilking’s connectedness lemma and
a lemma in Fang and Rong [FR05]. For a more detailed argument along these lines,
we refer to [Pet06, Section 7.1.3]

Proof. By Berger’s theorem (Corollary 5.3) in the weighted case, there exists x ∈M
fixed by either T r or a subtorus T r−1, according to whether n is even or odd. Since this
subtorus embeds into SO(n) via the isotropy representation, it follows that r ≤

⌊
n+1
2

⌋
.

We proceed to the equality case. First, if n ∈ {2, 3}, then M is homeomorphic to
a sphere since it is simply connected by the resolution of the Poincaré conjecture.
Suppose therefore that n ≥ 4. By arguing inductively as in Grove–Searle, it follows
that some circle in T r fixes a codimension-two submanifold N . By the connectedness
lemma in the weighted case, we conclude that the inclusion N →֒ M is dim(N)–
connected. It follows immediately from Poincaré duality that M and N are integral
cohomology spheres or complex projective spaces (see, for example, [Wil03, Section
7]). If M is an integral sphere, then it is a homeomorphism sphere by the resolution
of the Poincaré conjecture. IfM is an integral complex projective space, then the fact
that N respresents the generator of H2(M ;Z) implies that M is homeomorphic to
complex projective space, by Lemma 3.6 in Fang–Rong [FR05]. �

We remark that there are a number of generalizations of Grove and Searle’s result.
These include results of Rong and Fang in the cases of “almost maximal symmetry
rank” or non-negative curvature (see Fang and Rong [Ron02, FR05], Galaz-Garcia
and Searle [GGS11, GGS14], and Wiemeler [Wie15]).

Returning to the case of positive curvature, there are additional results that assume
less symmetry. We focus here on the following homotopy classification due to Wilking
[Wil03, Theorem 2]:

Theorem 7.2 (Wilking’s homotopy classification). Let Mn be a closed, simply con-
nected, positively curved manifold, and let T r act effectively by isometries on M . If
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n ≥ 10 and r ≥ n
4
+ 1, then M is either homeomorphic to Sn or H Pn/4 or homotopy

equivalent to C Pn/2 .

By Grove and Searle [GS94] and Fang and Rong [FR05], this result actually holds
for all n 6= 7. Additionally the conclusion in this theorem has been improved to a
classification up to tangential homotopy equivalence (see Dessai and Wilking [DW04,
Remark 1.4]). We prove the following analogue of Wilking’s classification under a
slightly stronger symmetry assumption:

Theorem 7.3. Let (Mn, g, X) be closed and simply connected with positive weighted
sectional curvature. If M admits an effective, isometric torus action of rank r ≥
n
4
+ log2 n, then M is homeomorphic to Sn or tangentially homotopy equivalent toC Pn/2 .

Note that H Pn/4 does not appear in the conclusion. This is consistent with Theorem
3 in Wilking [Wil03], which states that the maximal rank of a smooth torus action
on an integral H Pm is m+ 1.

One reason for the larger symmetry assumption is that Wilking’s original proof in-
vokes the full strength of Grove and Searle’s equivariant diffeomorphism classification.
Since we do no prove this here, we cannot use exactly the same proof. In addition, the
larger symmetry assumption allows us to side-step some of the more delicate parts of
Wilking’s proof and thereby allows for a quick argument that captures the essence of
his induction machinery, as described in the introduction of [Wil03].

Proof of Theorem 7.3. We first note that it suffices to prove that M has the integral
cohomology of Sn or C Pn/2 . Indeed, a simply connected integral sphere is homeomor-
phic to the standard sphere by the resolution of the Poincaré conjecture. Moreover,
it is well known that a simply connected integral complex projective space is homo-
topy equivalent to the standard one, and the classification up to tangential homotopy
follows directly from Dessai and Wilking [DW04].

Second, note that the theorem holds in dimensions n ≤ 13 by the extension of
Grove and Searle’s result (Theorem 7.1). We proceed by induction for dimensions
n ≥ 14. By examining the istropy representation at a fixed-point of T r (or T r−1

in the odd-dimensional case), one sees that an involution ι ∈ T r exists such that
some component N of its fixed-point set has codimension cod(N) ≤ n+3

4
(see, for

example, Lemma [Ken14, 1.8.(1)]). By replacing ι by another involution, if necessary,
we may assume cod(N) is minimal. In particular, the induced action of the torus
T r/ ker(T r|N) has rank at least r − 1.

If cod(N) = 2 and N is fixed by a circle, the claim follows as in the proof of
the Grove–Searle result. Otherwise, T r/ ker(T r|N) is a torus that acts effectively and
isometrically on N with dimension at least 1

4
dimN + log2(dimN). Since N is a

fixed-point set of an involution in T r, the vector field X is tangent to N , and N
inherits positive weighted sectional curvature. By the connectedness lemma, N is
simply connected. By the induction hypothesis, N is an integral sphere or complex
projective space. By the connectedness lemma again, it follows that M too is an
integral sphere or projective space. This concludes the proof. �
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The theorems of this section should be viewed as a representative, as opposed
to exhaustive, list of the kinds of topological results we can now generalize to the
weighted setting. Indeed, the tools discussed in this paper have been applied to similar,
weaker topological classification problems for positively curved manifolds with torus
symmetry. Invariants calculated or estimated include the fundamental group (see
Wilking [Wil03, Theorem 4], Frank–Rong–Wang [FRW13], Sun–Wang [SW09], and
[Ken]), the Euler characteristic (see work of the first author and Amann [Ken13,
AK14, AK]), and the elliptic genus (see Dessai [Des05, Des07] and Weisskopf [Wei]).
Much of this work now can also be extended to the weighted case using the results in
this article.

On the other hand, it is much less clear whether some other prominent classification
theorems for manifolds with positive curvature and torus symmetry can be extended
to the weighted setting. Principal among these is the situation in low dimensions.
In Section 2, we discussed why closed manifolds with positive weighted sectional
curvature in dimension two and three are diffeomorphic to spherical space forms.
In dimension 4, Hsiang and Kleiner [HK89] proved that a closed, simply connected
manifold M in dimension four with positive curvature and an isometric circle action
is homeomorphic to S4 or C P2 . This result has been generalized in a number of ways.
Recently, Grove and Wilking strengthened the conclusion to state that the circle
action on M is equivariantly diffeomorphic to a linear action on one of these two
spaces (see [GW14] and references therein for a survey of related work). A natural
question is whether this result also holds for positive weighted sectional curvature.

Question 7.4. Let (M4, g, X) be simply connected and closed with positive weighted
sectional curvature. Is every effective, isometric circle action on M equivariantly dif-
feomorphic to a linear action on S4 or C P2?

In dimension five, Rong [Ron02] proved that a positively curved M5 with an iso-
metric 2–torus action is diffeomorphic to S5. This result has also been improved to
an equivariant diffeomorphism classification (see Galaz-Garcia and Searle [GGS14]),
giving the following question.

Question 7.5. Let (M5, g, X) be simply connected and closed with positive weighted
sectional curvature. Is every effective, isometric torus action of rank two on M equiv-
ariantly diffeomorphic to a linear action on S5?

8. Future directions

In addition to addressing Questions 7.4 and 7.5, another avenue of research is to
consider compact manifolds with density that admit positive weighted curvature and
an isometric action by an arbitrary Lie group G. To make this problem tractible,
one can assume that G is large in some sense, e.g., that G or its principal orbits
have large dimension. Notable are classification results in this context due to Wal-
lach [Wal72] and Bérard-Bergery [BB76] for transitive group actions, Wilking [Wil06]
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for more general group actions, Grove and Searle [GS97] and Spindeler [Spi14] for
fixed-point homogeneous group actions, and Grove and Kim [GK04] for fixed-point
cohomogeneity one group actions. In the non-negatively curved case, especially in
small dimensions, there have been some extensions of these results due to DeVito
[DeV14, DeV], Galaz-Garcia and Spindeler [GGS12], Simas [Sim], and Gozzi [Goz15].

A particularly interesting case is where G is so large that the principal orbits have
codimension one. Manifolds that admit a cohomogeneity one metric with positive
sectional curvature have been classified by Verdiani [Ver04] in the even-dimensional
case and by Grove, Wilking, and Ziller [GWZ08] in the odd-dimensional case (see also
[VZ14] and the recent generalization to the case of polar actions by Fang, Grove, and
Thorbergsson [FGT]).

The classification is actually incomplete in dimension seven, as there are two infinite
families of manifolds that are considered “candidates” to admit positive curvature.
There are very few examples of manifolds that admit positive curvature, so it was
remarkable that one of these candidates was recently shown to admit positive sectional
curvature by Dearricott [Dea11] and Grove–Verdiani–Ziller [GVZ11]. It remains to be
seen whether the others admit positive curvature.

It would be interesting to examine these results in the case of manifolds with
density. Doing this would hopefully lead to new insights into the question posed in
the introduction: If (M, g,X) is compact with positive weighted sectional curvature,
does M admit a metric with positive sectional cuvature?

The most prominent missing ingredient when trying to generalize results to the
weighted setting is a Toponogov-type triangle comparison theorem and the resulting
convexity properties of distance functions. These crucial tools would be needed to
address Questions 7.4 and 7.5, the equivariant diffeomorphism rigidity in Grove and
Searle’s theorem (Theorem 7.1), and the results above for general group actions.

The examples in Section 2 show that the classical statement of the Toponogov
theorem is false for positive weighted sectional curvature. On the other hand, we can
make an analogy here with the situation of Ricci curvature and Bakry–Emery Ricci
curvtaure. For positive Ricci curvature, instead of convexity of the distance function,
one obtains Laplacian and volume comparisons. These comparisons strictly speaking
do not hold for positive Bakry–Emery Ricci curvature, but they have modified weaker
versions which are still enough to recover topological obstructions, see [WW09]. We
believe there should be some form of modified convexity for distance functions one
obtains from positive weighted sectional curvature which may lead to generalizations
of all of the results mentioned above. This will be the topic of future research.
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