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Abstract In this paper we extend some well-known rigidity results for conformal
changes of Einstein metrics to the class of generalized quasi-Einstein (GQE) metrics,
which includes gradient Ricci solitons. In order to do so, we introduce the notions of
conformal diffeomorphisms and vector fields that preserve a GQE structure. We show
that a complete GQE metric admits a structure-preserving, non-homothetic complete
conformal vector field if and only if it is a round sphere. We also classify the structure-
preserving conformal diffeomorphisms. In the compact case, if a GQE metric admits
a structure-preserving, non-homothetic conformal diffeomorphism, then the metric is
conformal to the sphere, and isometric to the sphere in the case of a gradient Ricci
soliton. In the complete case, the only structure-preserving non-homothetic confor-
mal diffeomorphisms from a shrinking or steady gradient Ricci soliton to another
soliton are the conformal transformations of spheres and inverse stereographic pro-
jection.
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1 Introduction

It is well known that the Einstein condition on a Riemannian manifold is not con-
formally invariant. In the 1920s Brinkmann [2] classified when two Einstein metrics
are conformal to each other and Yano–Nagano [32] later proved that if a complete
Einstein metric admits a complete conformal field then it is a round sphere. For fur-
ther results in this direction, see [23, 25], and pp. 309–311 of [18]. For the pseudo-
Riemannian case and many more references, see [22].

In this paper we show that these results have natural extensions to the class of gen-
eralized quasi-Einstein (GQE) metrics, that is, Riemannian metrics g on a manifold
M of dimension n ≥ 3 satisfying

Ric + Hessf + αdf ⊗ df = λg (1.1)

for some smooth functions f,α,λ on M , where Ric and Hess are the Ricci curvature
and Hessian with respect to g. GQE manifolds1 were recently introduced by Catino
[7], who proved a local classification of GQE metrics with divergence-free Weyl ten-
sor. GQE metrics generalize:

• Einstein metrics: Ric = λg where λ ∈R,
• gradient Ricci solitons: Ric + Hessf = λg, where λ ∈R,
• gradient Ricci almost solitons: Ric + Hessf = λg, where λ ∈ C∞(M), introduced

by Pigola–Rigoli–Rimoldi–Setti [29], and
• m-quasi-Einstein metrics: α = − 1

m
for a positive integer m and λ ∈ R, introduced

by Case–Shu–Wei [6]; these include the static metrics when m = 1.

We will consider diffeomorphisms between GQE manifolds that preserve the
structure in the following sense.

Definition 1.1 A diffeomorphism φ from a GQE manifold (M1, g1, f1, α1, λ1) to a
GQE manifold (M2, g2, f2, α2, λ2) is said to preserve the GQE structure if φ∗α2 =
α1 and φ∗df2 = df1. A vector field V on a GQE manifold preserves the GQE struc-
ture if DV α = 0 and DV f is constant, or equivalently, if the local flows of V preserve
the GQE structure.

A conformal diffeomorphism φ between Riemannian manifolds (M1, g1) and
(M2, g2) is a diffeomorphism such that

φ∗g2 = w−2g1

for some function w > 0 on M1. A conformal vector field on a Riemannian manifold
(M,g) is a vector field whose local flows are conformal diffeomorphisms; equiva-
lently, V satisfies

LV g = 2σg

for some function σ on M , where L is the Lie derivative.

1We note that this class of metrics differs from the Kähler generalized quasi-Einstein metrics of Guan [13]
and the generalized quasi-Einstein metrics of Chaki [8].
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A trivial example of a conformal diffeomorphism that preserves the GQE struc-
ture is any homothetic rescaling (φ = identity, g2 = c2g1). We will say a conformal
diffeomorphism is non-homothetic if w is not constant. Similarly, a conformal vector
field is non-homothetic if σ is not constant.

We show that conformal diffeomorphisms and vector fields that preserve a GQE
structure only exist in very rigid situations. Our most general result is the following
classification theorem for non-homothetic conformal transformations that preserve a
generalized quasi-Einstein structure. This result holds in both the local and global
settings.

Theorem 1.2 Let φ be a non-homothetic, structure-preserving conformal diffeomor-
phism between GQE manifolds (M1, g1, f1, α1, λ1) and (M2, g2, f2, α2, λ2) of di-
mension n ≥ 3. Then, about points where αi �= 1

n−2 , g1 and g2 are both of the form

gi = ds2 + vi(s)
2gN, (1.2)

where (N,gN) is an (n − 1)-manifold independent of s and fi = fi(s), or

gi = e
2fi
n−2

(
ds2 + vi(s)

2gN

)
, (1.3)

where (N,gN) is an (n − 1)-manifold independent of s and fi is a function on N .
If either g1 or g2 is complete and αi �= 1

n−2 , then the metrics are globally either of
the form (1.2) or (1.3). Moreover, in case (1.2), if n ≥ 4 or α1 is constant, then gN is
Einstein; in case (1.3), gN is conformal to a GQE manifold with potential fi . Finally,
only (1.2) is possible if n = 3.

Remark 1.3 If α1 ≡ 1
n−2 , then g1 is conformal to an Einstein metric (see Proposi-

tion 3.1); these spaces fall into the Einstein case studied by Brinkmann [2].

Remark 1.4 When f is constant, cases (1.2) and (1.3) are the same. The metric g2
need not be complete if g1 is, even in the Einstein case; stereographic projection
provides a counterexample.

Remark 1.5 We give examples in Sects. 4.1 and 4.2 showing both cases in The-
orem 1.2 may occur. We also show that the two cases do not occur on the same
connected manifold unless f is constant.

In the compact case, we further obtain the following.

Theorem 1.6 Let φ be a non-homothetic, structure-preserving conformal diffeomor-
phism between compact GQE manifolds (M1, g1, f1, α1, λ1) and (M2, g2, f2, α2, λ2).
Then (Mi, gi) are conformally diffeomorphic to the standard round metric on Sn.
Moreover, if α1 �= 1

n−2 , then (Mi, gi) are rotationally symmetric.

The case of conformal fields exhibits greater rigidity than the case of discrete
conformal changes. For instance, we prove:
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Theorem 1.7 Suppose (M,g,f,α,λ) is a complete GQE manifold, with α �= 1
n−2 ,

that admits a structure-preserving non-homothetic conformal field: LV g = 2σg. If σ

has a critical point (e.g., if M is compact), then f is constant and (M,g) is isometric
to a simply connected space form.

Moreover, the round sphere is the only possibility if the conformal field is assumed
to be complete, generalizing Yano–Nagano’s result.

Theorem 1.8 If a complete GQE manifold (M,g,f,α,λ) with α �= 1
n−2 admits a

non-homothetic complete conformal field V preserving the GQE structure then f is
constant and (M,g) is isometric to a round sphere.

In fact, we obtain a full local classification without the completeness assumption
on V or g. There are several examples; we delay further discussion to Sect. 5.

We also obtain more rigidity in the case of a gradient Ricci soliton (i.e., α = 0
and λ is constant). A gradient Ricci soliton (M,g,f ) is called shrinking, steady, or
expanding depending on whether λ > 0, λ = 0, λ < 0 respectively. Combining our
results with some other well-known results for gradient Ricci solitons gives us the
following theorem.

Theorem 1.9 Let φ be a non-homothetic, structure-preserving conformal diffeomor-
phism between GQE manifolds (M1, g1, f1,0, λ1) and (M2, g2, f2,0, λ2), and as-
sume (M1, g1, f1) is a complete gradient Ricci soliton. Then g1 and g2 are both
metrics of the form (1.2), and:

• If M1 is compact, then g1 and g2 are both round metrics on the sphere.
• If (M1, g1, f1) is either shrinking or steady, then it is a round metric on the sphere,

the flat metric on R
n, the Bryant soliton, or a product R× N where N is Einstein

with Einstein constant λ.
• If, in addition, (M2, g2, f2) is a soliton, then either (Mi, gi) are round metrics on

the sphere or φ is an inverse stereographic projection with (M1, g1) flat Euclidean
space and (M2, g2) a round spherical metric with a point removed.

• If (M,g,f ) is a complete gradient Ricci soliton admitting a non-homothetic con-
formal field that preserves the structure, then (M,g) is Einstein and f is constant.

Remark 1.10 In the last case, note that complete Einstein metrics admitting non-
homothetic conformal fields were classified by Kanai [16]; we recall this classifica-
tion in Remark 6.4.

Remark 1.11 We also obtain that g1 and g2 are both of the form (1.2) when g1 is m-
quasi-Einstein. m-quasi-Einstein metrics of the form (1.2) are found in [1] (cf. [14]).
Examples of complete expanding gradient Ricci solitons of the form (1.2) are found
in [11].

Remark 1.12 Interesting results for some conformal changes of Kähler Ricci solitons
that do not preserve the GQE structure are obtained in [24].
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Remark 1.13 The results of this paper can be viewed as an initial investigation into
the interesting more general problem of understanding when two generalized quasi-
Einstein metrics (or gradient Ricci solitons) can be related by a conformal change.
Further investigations into the case where the GQE structure is not preserved could
potentially yield new constructions of examples or a more general classification.

The paper is organized as follows. In Sect. 2 we discuss warped product metrics
with a one-dimensional base. The first observation, known to Brinkmann, is a charac-
terization of these spaces as those admitting a non-constant solution to a certain PDE.
The second observation is a duo of completeness lemmas for metrics conformal to a
warped product, in which the conformal factor is either a function on only the base
or only the fiber. Section 3 is the technical heart of the paper. We recast the GQE
condition on g in terms of an equivalent condition on a conformally rescaled metric
h, then establish a warped product structure on h. Next, we understand the geometry
of g by demonstrating that the conformal factor only depends on the fiber or the base,
leading to two possible cases. Finally, we prove the global structure of g, arguing that
both cases may not occur on a connected manifold. In Sect. 4 we give a variety of ex-
amples that demonstrate the sharpness of the classification theorems. Section 5 takes
up the case in which a GQE manifold admits a structure-preserving conformal field,
and Sect. 6 specializes our results to gradient Ricci solitons and m-quasi-Einstein
manifolds.

2 Warped Products over a One-Dimensional Base

In this preliminary section we recall the notion of warped products over a one-
dimensional base and their characterization as the metrics that support a gradient con-
formal field. This result has a long history: the local version goes back to Brinkmann
[2], and the global version was established in full generality in the Riemannian case
by Tashiro [31]. Tashiro’s work generalized a well-known characterization of the
sphere due to Obata [26].

We require slightly non-standard versions of these results where our metric is not
complete, but is conformal to a complete metric by a conformal change of a certain
form. In Lemmas 2.9 and 2.11, we establish that Tashiro’s proof can be extended to
give a global warped product structure in these cases, a necessary step in our eventual
proof of Theorem 1.2.

Definition 2.1 A warped product over a one-dimensional base is a smooth manifold
isometric to one of the following.

(I)
(
I × N,h = dt2 + v(t)2gN

)
,

where I is an open interval (possibly infinite), v : I →R is smooth and positive,
and (N,gN) is a Riemannian manifold;
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(II)
(
BR(0) ⊂ R

n,h = dt2 + v(t)2gSn−1

)
,

where BR(0) is an open ball about the origin of radius R ∈ (0,∞], v : [0,R) →
R is smooth, positive for t > 0, with v(0) = 0, and gSn−1 is a round spherical
metric; or

(III)
(
Sn, dt2 + v(t)2gSn−1

)
,

where v : [0,R] →R is smooth, positive for 0 < t < R, with v(0) = v(R) = 0.

Remark 2.2 In case (I) g is complete if and only if gN is complete and I = R. Case
(II) metrics are complete if and only if I = [0,∞), and are rotationally symmetric
metrics on R

n. Case (III) metrics are rotationally symmetric metrics on Sn. In cases
(II) and (III) smoothness of the metric implies further boundary conditions on the
derivatives of v (see [28], for example).

An important property of these spaces is they always support a gradient conformal
vector field.

Proposition 2.3 For an n-dimensional warped product metric over a one-dimensional
base:

h = dt2 + v(t)2gN,

any anti-derivative u(t) of v(t) satisfies the equation

1

2
L∇uh = Hessu = �u

n
h, (2.1)

where ∇ , Hess, and � are the gradient, Hessian, and Laplacian with respect to h.

The fundamental fact we will exploit is that the converse is also true. For the full
proof and history of this result we refer the reader to Lemma 3.6 and Proposition 3.8
of [22], which also include pseudo-Riemannian versions and additional references.
See also [9].

Lemma 2.4 Suppose that a non-constant function u on a Riemannian manifold
(M,h) satisfies (2.1). Then the critical points of u are non-degenerate and isolated.
Fix p ∈ M .

(1) If |∇u(p)| �= 0, then in a neighborhood U of p, g is isometric to a warped prod-
uct over a one-dimensional base of type (I):

(U,g) ∼= (
I × N,dt2 + u′(t)2gN

)
,

where u = u(t), u′(t) �= 0, and (N,gN) is some Riemannian (n − 1)-manifold
independent of t . If x denotes coordinates on N , we say (t, x) give rectangular
coordinates on U .
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(2) If |∇u(p)| = 0 then there is a neighborhood U of p on which g is isometric to a
warped product over a one-dimensional base of type (II), and u is a function of
only the distance t to p:

(U,g) ∼=
(

BR(0), dt2 +
(

u′(t)
u′′(0)

)2

gSn−1

)
,

where u′(t) �= 0 for t > 0. If x denotes coordinates on Sn−1, we say (t, x) give
polar coordinates on U .

Later, in case (2) we rescale gSn−1 without further comment to absorb u′′(0). Since
aspects of the proof will be important for our next two results, we include a proof of
(1) for completeness. We will find the following definitions of Tashiro useful.

Definition 2.5 Let u be a solution to (2.1). A u-component is a connected component
of a non-degenerate level set of u. A u-geodesic is a geodesic of h that is parallel to
∇u wherever ∇u �= 0.

Proof of Lemma 2.4, (1) Let p be a point with ∇u(p) �= 0 and let L be the
u-component containing p. There is a neighborhood U of p such that ∇u �= 0 on
U , U is diffeomorphic to (−ε, ε) × N , where N ⊂ L, and U has coordinates (t, x),
where ∂

∂t
= ∇u

|∇u| and x denotes coordinates for N . We also choose N to be connected.
For X orthogonal to ∇u, (2.1) implies that

DX|∇u|2 = 2Hessu(X,∇u) = 0,

so |∇u| is a function of t and ∇u = ψ(t) ∂
∂t

. This in turn implies that u = u(t) and
ψ(t) = u′(t). Then we have

h

(
∇ ∂

∂t

∂

∂t
,X

)
= 1

u′(t)
Hessu

(
∂

∂t
,X

)
= 0,

which shows that the curves t �→ (t, x) are the u-geodesics in U .
This establishes that the metric is of the form h = dt2 + gt , where gt is a one-

parameter family of metrics on N . It also implies that

Hessu

(
∂

∂t
,

∂

∂t

)
= h

(
∇ ∂

∂t

(
u′(t) ∂

∂t

)
,

∂

∂t

)
= u′′(t).

By (2.1), we now see that �u = nu′′(t). Using (2.1) again we obtain for X,Y orthog-
onal to ∇u,

(L ∂
∂t

h)(X,Y ) = 2
u′′

u′ h(X,Y ),

which implies that gt (X,Y ) = u′(t)2gN(X,Y ) for some fixed metric gN on N . �

Remark 2.6 The fact that |∇u| is a function of t in the proof shows that we can choose
U to be a neighborhood of L, even when L is non-compact: if ∇u �= 0 on {t0} × N ,
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then ∇u �= 0 and has constant length on the whole leaf {t0} × L. In particular, we
see that, in a neighborhood of a point with ∇u(p) �= 0, the sets {t} × N are the u-
components and that the u-geodesics are the geodesics in the t direction. In the case
where ∇u(p) = 0 we have that all of the geodesics beginning at p are u-geodesics
and the metric spheres around p are u-components.

Tashiro’s theorem is the following global version of this result: if h is complete and
supports a non-constant function satisfying (2.1), then h is globally a warped product
over a one-dimensional base (cf. Theorem 5.4 of [27]). We show that Tashiro’s argu-
ments can be used to also prove global theorems for (possibly incomplete) metrics
that are conformal to a complete metric in a certain way. First we need a definition.

Definition 2.7 Let u be a non-constant solution to (2.1) on (M,h), let f be a smooth
function on M , and let U ⊂ M . We say f = f (t) on U if ∇f is parallel to ∇u on U ,
and f = f (x) on U if ∇f is orthogonal to ∇u on U .

Remark 2.8 From Lemma 2.4, around every point p, the metric h can be written on
some neighborhood U of p as

dt2 + u′(t)2gN

with (polar or rectangular) coordinates (t, x). Then f = f (t) in the above definition
if and only if f is a function of only the t-coordinate on U ; similarly, f = f (x) as
above if and only if f is independent of t on U .

Lemma 2.9 Suppose that a non-constant function u on a Riemannian manifold
(M,h) satisfies (2.1) and suppose that f is a function such that f = f (t) on M

and (M,e
2f
n−2 h) is complete. Then (M,h) is (globally) a one-dimensional warped

product, with complete fiber metric gN .

Remark 2.10 The normalization of the conformal factor e
2f
n−2 is not important, but is

used to be consistent with later notation.

Proof Set g = e
2f
n−2 h. Let N be a u-component, with induced metric gN from h.

Applying Lemma 2.4 to every point of N shows that g|T N and h|T N are homothetic
(since f = f (t)). Since N is a closed subset of the complete manifold (M,g), it
follows that (N,gN) is complete.

Let J be the largest open interval of regular values of u that contains u(N), and
let U ⊂ M be the connected component of u−1(J ) that contains N . Let q ∈ N and
let γq be the u-geodesic with respect to h through q . Since f = f (t), γq is, up to
reparameterization, also a geodesic for g. In particular, since g is complete, such
curves are well defined until they possibly leave U . Moreover, since u = u(t), they
all leave U (if at all) at the same parameter value of t .

As in the proof of Lemma 2.4, it follows that U is diffeomorphic to I × N , where
I is an open interval, and that in the coordinates induced by this diffeomorphism,

h = dt2 + u′(t)2gN,



Conformal Diffeomorphisms of GQE Manifolds

where t is the signed h-distance to gN . Say I = (a, b) (where a, b ∈ [−∞,∞]), and
define the change of variables

s(t) =
∫ t

0
e

f (r)
n−2 dr.

Using the new coordinate s, we have that on U ,

g = ds2 + u′(s)2e
4f (s)
n−2 gN .

Define

c = lim
t→a+ s(t), d = lim

t→b− s(t).

Now we can just imitate Tashiro’s proof, analyzing three possible cases.
If c = −∞ and d = +∞, the restriction of g to the open subset U defines a

complete metric, and so (U,g|U) = (M,g). In particular, g is a globally warped
product with one-dimensional base of type (I). Since f = f (t), the same goes for h.

Next, suppose c = −∞ but d is finite (or vice versa). Consider a geodesic γ (s)

with respect to g, orthogonal to N with increasing s. By completeness, γ may be
extended to R, and so we conclude q = lims→d− γ (s) is a critical point of u (or else
J was not maximal as chosen). By Lemma 2.4, h admits polar coordinates (t1, x)

about p with warping factor u′ and fiber Sn−1. Since the coordinates t and t1 are both
given by level sets of u, these coordinate neighborhoods can be combined to show
that h and g are warped product metrics with one-dimensional base of type (II).

Finally, consider the case in which c and d are both finite. A similar argument
shows that u has critical points at s = c and s = d , and we conclude that h is a
warped product with one-dimensional base of type (III). �

From these arguments we also see the following in the case f = f (x).

Lemma 2.11 Suppose that a non-constant function u on a Riemannian manifold
(M,h) satisfies (2.1) and has no critical points. Suppose that f is a function such

that f = f (x) on M and (M,e
2f
n−2 h) is complete. Then (M,h) is (globally) a one-

dimensional warped product of type (I):

(M,h) = (
R× N,dt2 + u′(t)2gN

)
.

Remark 2.12 In this case, gN is not necessarily complete.

Proof This result follows from similar arguments to Lemmas 2.4 and 2.9 once we
show that the u-geodesics with respect to h exist for all time. Let γ (t) be a u-geodesic
with respect to h defined for 0 ≤ t < t0. Let ti ↗ t0, so that {γ (ti)} is Cauchy in

(M,h). The sequence is also Cauchy in (M,g) since g = e
2f
n−2 h and f is constant

along γ (t). By completeness, {γ (ti)} converges with respect to g to some q ∈ M . By
considering the u-geodesics in a neighborhood of q , we see that γ can be extended
past t0. �
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Remark 2.13 From the proof we can see that only the completeness of the
u-geodesics in g is necessary for this last result.

3 Conformal Diffeomorphisms Preserving the GQE Structure

In this section we prove Theorem 1.2, giving the classification of GQE metrics ad-
mitting a conformal diffeomorphism preserving the GQE structure. The first step is
to give a convenient conformal interpretation of the GQE equation (1.1), used previ-
ously by Catino [7] and Kotschwar [20].

Proposition 3.1 A Riemannian manifold (M,g) of dimension n ≥ 3 satisfies the
GQE equation (1.1) with functions f , α, and λ if and only if there is a conformally
related metric h that satisfies

Rich =
(

1

n − 2
− α

)
df ⊗ df + Qh (3.1)

for some function Q, where Rich is the Ricci curvature of h.

Proof Set h = e
−2f
n−2 g. The Ricci curvatures of h and g are related by

Rich = Ricg + Hessgf + 1

n − 2
df ⊗ df + 1

n − 2

(
�gf − |∇f |2g

)
g. (3.2)

Thus we see that h satisfies (3.1) if and only if Ricg + Hessgf + αdf ⊗ df = λg,
where

Q = 1

n − 2

(
�gf − |∇f |2g + (n − 2)λ

)
e

2f
n−2 . (3.3)

�

Remark 3.2 h is generally incomplete even if g is complete.

Remark 3.3 It follows that a Riemannian metric is conformal to an Einstein metric if
and only if it admits a GQE structure with α ≡ 1

n−2 .

Example 3.4 A warped product over a one-dimensional base

h = dt2 + v(t)2gN

has Ricci curvature

Rich = −(n − 1)
v′′

v
dt2 + RicgN

− (
vv′′ + (n − 2)

(
v′)2)

gN . (3.4)

Assume RicgN
= μgN for a constant μ. Then (3.1) is satisfied with f = f (t) if and

only if
(

1

n − 2
− α

)
f ′(t)2 = Rich

(
∂

∂t
,

∂

∂t

)
− Rich(X,X)

= (n − 2)((v′)2 − vv′′) − μ

v2
, (3.5)
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where X is a field perpendicular to ∂
∂t

such that h(X,X) = 1. Choose a function
α(t) so that (3.5) defines a function f (t). Then h and f satisfy (3.1) for some Q.

Consequently, g = e
2f
n−2 h is a GQE metric.

Example 3.5 As an alternative to the above, let (M,g) be a warped product over a
one-dimensional base, g = ds2 +v(s)2gN , of type (I) with gN Einstein (with Einstein
constant μ), or else of type (II) or (III) (in which the Einstein constant of gSn−1 is
(n − 1)). Then (M,g) is automatically a Ricci almost soliton, where the potential
f = f (s) can be found from the ODE

(
f ′

v

)′
= μ + (n − 2)(vv′′ − (v′)2)

v3
,

and λ = λ(s) is given by

λ = f ′′ − (n − 1)
v′′

v
.

3.1 Local Form of h

We first prove a local classification for the conformally rescaled metric h.

Lemma 3.6 Let (M1, g1, f1, α1, λ1) and (M2, g2, f2, α2, λ2) be GQE manifolds ad-
mitting a non-homothetic conformal diffeomorphism φ preserving the GQE structure.

Then every p ∈ M1 is contained in a neighborhood U on which h1 = e− 2f1
n−2 g1 is a

warped product over a one-dimensional base of type (I) or (II):

h1 = dt2 + u′(t)2gN

for an appropriate function u(t).

Remark 3.7 If α1 = α2 = 1
n−2 or f1 and f2 are constant, this result recovers

Brinkmann’s original result for Einstein manifolds.

Proof Let hi = e− 2fi
n−2 gi be the corresponding conformally rescaled metrics. Then

φ∗g2 = w−2g1 if and only if φ∗(h2) = u−2h1, where

u−2 = w−2e
2f1
n−2 e− 2φ∗f2

n−2 = w−2e− 2C
n−2

for the constant C = φ∗f2 − f1. In particular, since w is non-constant, u is non-
constant as well. We have from Proposition 3.1 that Richi

= ( 1
n−2 − αi)dfi ⊗ dfi +

Qihi for i = 1,2. Since φ preserves the GQE structure, we have

φ∗
((

1

n − 2
− α2

)
df2 ⊗ df2

)
=

(
1

n − 2
− α1

)
df1 ⊗ df1,

and so

Ricφ∗(h2) − Rich1 = (
φ∗Q2

)
φ∗h2 − Q1h1 = ((

φ∗Q2
)
u−2 − Q1

)
h1.
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Thus the difference of the Ricci tensors is pointwise proportional to h1. On the other
hand, by the formula for the conformal change h1 → u−2h1, we have

Ricφ∗(h2) − Rich1 = (n − 2)
Hessh1u

u
+ (

u−1�h1u − (n − 1)|∇u|2h1
u−2)h1.

Putting these equations together we conclude that Hessh1u is pointwise proportional
to h1. Taking the trace, we see that (2.1) is satisfied by u with respect to h1. From
Lemma 2.4, we deduce the local warped product structure of h1. �

3.2 Local Form of g

Now with a local classification of the metric h1 = e− 2f1
n−2 g1, we pass to a local classi-

fication of g1 by understanding the local behavior of f1.

Lemma 3.8 Under the hypotheses of Lemma 3.6, let p be a point in M1 with α1(p) �=
1

n−2 , and set h = h1 and f = f1, and α = α1.

(1) If p is a critical point of u, then h is a type (II) warped product

h = dt2 + u′(t)2gSn−1

in a polar coordinate neighborhood U of p and f = f (t) on U .
(2) If p is not a critical point of u, then h is a type (I) warped product

h = dt2 + u′(t)2gN

in a rectangular coordinate neighborhood U of p, and either
(a) f = f (t) on U and (if n ≥ 4 or α is constant) gN is Einstein, or
(b) f = f (x) on U and

RicgN
=

(
1

n − 2
− α

)
df ⊗ df + PgN, (3.6)

where P is a constant and α = α(x). Moreover, Q, defined in Proposition
3.1, is constant and u′′′ = −Q

n−1u′.

Finally, case (2b) does not occur if n = 3.

In particular, in the f = f (x) case, the metric e
2f
n−3 gN is a GQE (n − 1)-manifold

with potential f , with α shifted by 1
n−3 − 1

n−2 (by Proposition 3.1).

Proof By the previous lemma, in a neighborhood U of p,

h = dt2 + u′(t)2gN,

where (t, x) are either polar or rectangular coordinates and the metric gN is indepen-
dent of t . Letting v(t) = u′(t), we find the Ricci curvature of h from (3.4). For X,Y
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tangent to N ,

Rich

(
∂

∂t
,

∂

∂t

)
= −(n − 1)

v′′

v

Rich

(
∂

∂t
,X

)
= 0

Rich(X,Y ) = RicgN
(X,Y ) −

(
v′′

v
+ (n − 2)

(v′)2

v2

)
h(X,Y ).

(3.7)

In this proof, we frequently identify {t} × N with N .
We begin with some observations. First, from (3.1) we see that Rich has at most

two distinct eigenvalues at each point. If there are two distinct eigenvalues, the or-
thogonal eigenspaces are of dimension 1 and n − 1. Second, ∇f is an eigenvector
field for the one-dimensional eigenspace of Rich wherever it does not vanish. Third,
from (3.7), ∂

∂t
is an eigenvector field for Rich.

Fix p ∈ M , and let U be a coordinate neighborhood as in Lemma 3.6 (shrunken if
necessary so that α �= 1

n−2 on U ).

Case A If p is a critical point of u then we have polar coordinates (t, x), and gN =
gSn−1 . We then have

Rich(X,Y ) =
(

μ − (n − 2)(v′)2

v2
− v′′

v

)
h(X,Y ),

where μ is the Einstein constant of gSn . This shows that the (n−1)-dimensional space
TqN ⊂ TqM is contained in an eigenspace of Rich for every q ∈ U . Therefore, at any
point in U for which ∇f �= 0, we have that ∇f and ∂

∂t
both span the one-dimensional

eigenspace of Rich so that ∇f is parallel to ∂
∂t

. Then f = f (t) on U .
From now on, we assume p is not a critical point of u, so that we have rectangular

coordinates (t, x) on U . Without loss of generality we also assume that p = (0, x0)

in these coordinates.

Case B Suppose p is not a critical point of u and RicgN
= μgN at all points in a

neighborhood V ⊂ N containing x0 for some function μ ∈ C∞(V ). (This assumption
is always satisfied when n = 3 and by Schur’s lemma μ is constant if we are in
this case and n > 3). Then the exact same argument as in Case A, which only used
RicgN

= μgN , shows that f = f (t) on U . Moreover, if α is constant, then (3.1) and
(3.7) show that Q = Q(t) and consequently that μ is independent of x and therefore
constant.

We are now left with the case that p is not a critical point of u and RicgN
�=

μgN in any neighborhood of x0. There are then two cases, depending on whether the
condition is true at x0 or not.

Case C Suppose p is not a critical point of u and RicgN
is not proportional to gN

at x0.
Then Rich is not proportional to h, so ∇f (p) �= 0. Shrink U if necessary so that

∇f �= 0 on U . ∇f is an eigenvector field of Rich with corresponding eigenvalue of
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multiplicity one. It cannot be parallel to ∂
∂t

and therefore must be orthogonal to ∂
∂t

on U . This shows that f = f (x) on U . Setting our two expressions for Rich equal
yields

−(n − 1)
v′′

v
= Q

RicgN
=

(
1

n − 2
− α

)
df ⊗ df + (

Qv2 + vv′′ + (n − 2)
(
v′)2)

︸ ︷︷ ︸
P

gN .
(3.8)

The first equation implies that Q = Q(t); it follows then from the second that the
coefficient P on gN is constant, and consequently α = α(x). Eliminating Q in the
equations gives

vv′′ − (
v′)2 = − P

n − 2
.

Any solution to this equation must solve v′′ = kv for some constant k and therefore
Q must also be constant. We then find for later reference that

(
v′)2 + Q

n − 1
v2 = P

n − 2
. (3.9)

Case D p is not a critical point of u and RicgN
is proportional to gN at x0, but is not

proportional in any neighborhood of x0.
Consider a sequence of points xi in N converging to x0 such that RicgN

is not
proportional to gN at xi . Then ∇f (t, xi) must be tangent to N by case C. Therefore,
by continuity and (3.8), we must have df = 0 at the points (t, x0) t ∈ I . If df = 0
in a neighborhood of p, then f is constant and the lemma is clearly true by simply
shrinking U to be the neighborhood where f is constant.

Consider a connected component W of the nonempty, open set {df �= 0} ∩ U

with p ∈ ∂W . Since df �= 0 on W , we have by cases A–C that either f = f (t) or
f = f (x) on W . By way of contradiction, suppose f = f (t) on W . Then W is a set
of the form (a, b)×V , where V is an open subset of N . By the previous paragraph, f
is constant along the curve t �→ (t, x0). If x0 ∈ V , this shows that df vanishes in W ,
a contradiction. If x0 ∈ ∂V , the same argument applies by continuity. Therefore, we
have f = f (x) in a neighborhood of p, so we may follow the argument of case C. �

3.3 Global Form of g

The previous lemma splits M into two sets: the points where f = f (t) and the points
where f = f (x). We now rule out the possibility that both cases occur.

Lemma 3.9 If α �= 1
n−2 , the cases f = f (x) and f = f (t) may not both occur on

the same connected manifold M , unless f is constant. Moreover, if f is non-constant
and f = f (x) occurs, then u has no critical points.
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Proof Define A to be the set of points p ∈ M that are either critical points of u or
regular points p that satisfy the property

∇f is everywhere orthogonal to L and |∇f | is constant along L, where L is
the u-component containing p,

which we denote by (∗). As usual, ∇ is the gradient with respect to h.
We show A is open. Let p ∈ A. First, if p is a critical point, then by the previous

lemma, we have polar coordinates around p with f = f (t). On this coordinate neigh-
borhood, (∗) clearly holds at every point besides p. Otherwise, p is a regular point;
let L be the u-component containing it. If ∇f (p) �= 0, then we are in the f = f (t)

case on a neighborhood U constructed in the previous lemma. It is readily seen that
(∗) holds on U .

If ∇f (p) = 0, then by (∗), ∇f vanishes on L. Then on L, the Ricci curvature
of L is proportional to the metric on L, by (3.1) and (3.4). Let U be a coordinate
neighborhood of p as in the previous lemma, so that

h = dt2 + u′(t)2gN

on U , where N ⊂ L. By case B of the proof of the previous lemma, f = f (t) on U ,
and so (∗) holds on U .

Next, we show A is closed. Let {pi} be a sequence in A converging to p ∈ M .
Since A is open and the critical points of u are isolated, we may assume without loss
of generality that each pi is a regular point of u. If p is a critical point of u, we are
done. Otherwise, let L be the u-component containing p, and similarly Li for pi . It
is now clear from the definition that (∗) holds on L, since it holds on each Li .

Thus, either A is empty, or A = M . If f = f (x) and is non-constant on some open
set, then ∇f is tangent to a u-component, and so A is empty. In particular, u has no
critical points. If, in addition, f = f (t) and is non-constant on an open set, then A is
non-empty, a contradiction. �

Now we complete the proof of the local and global classifications stated in the
Introduction.

Proof of Theorem 1.2 From Lemmas 3.6 and 3.8, g1 = e
2f1
n−2 h1 is locally either of the

form (1.2) or (1.3), (since in the f1 = f1(t) case we may do a change of variables

ds = e
f1(t)

n−2 dt). Moreover, if g1 is complete, then we have a global structure of the
form (1.2) or (1.3) by Lemmas 2.9 and 2.11. In the f1 = f1(x) case, (3.6) is satisfied,

which implies by Proposition 3.1 that e
2f1
n−3 gN is GQE with potential f1.

Next, we prove that h2 also has a warped product structure. Since

h1 = dt2 + u′(t)2gN,

the metric h2 satisfies

φ∗(h2) = u−2(t)dt2 + (
u′u−1)2

gN .
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Defining dr = u−1(t)dt we then obtain that

h2 = dr2 +
(

d

dr

(−u−1)
)2

gN

up to isometry. Note that since φ∗df2 = df1, if f1 = f1(t) then f2 = f2(t) (and
similarly if f1 = f1(x)). Thus, g2 has the form stated in the theorem. �

We also prove the global result for compact manifolds.

Proof of Theorem 1.6 By compactness and Lemma 2.9 (or alternatively by Tashiro’s
theorem), h1 is a warped product with one-dimensional base of type (III), and is
therefore a rotationally symmetric metric on a sphere. Such metrics are conformal to
a round metric, so certainly (M1, g1) is conformally diffeomorphic to a round sphere,
and the same goes from (M2, g2).

Suppose α1 �= 1
n−2 . Since u has a critical point by compactness, we are in the case

f1 = f1(t) by Lemma 3.9. It then follows that (M1, g1) and (M2, g2) are rotationally
symmetric metrics on the sphere. �

4 Examples

In the next two subsections we construct examples of generalized quasi-Einstein man-
ifolds that are warped products over a one-dimensional base, both in the f = f (t) and
f = f (x) cases. By Proposition 3.1, it suffices to construct metrics h and functions
f satisfying (3.1). In the third subsection we further show that all of these exam-
ples admit one-parameter families of local conformal changes that preserve the GQE
structure. In many cases these conformal changes are global.

4.1 The f (t) Case

We start with an arbitrary Riemannian manifold (U,h) of dimension n ≥ 3 of the
form

U = (a, b) × N

h = dt2 + u′(t)2gN

for some u(t) with u′(t) > 0 on (a, b). Assume that N is an Einstein metric, RicgN
=

μgN and that α : (a, b) → R is also a smooth function of t , such that α(t) �= 1
n−2 for

any t . From Example 3.4 we see that there is a metric of the form g = e
2f
n−2 h for some

function f = f (t) if u satisfies the differential inequality

1
1

n−2 − α

(
−(n − 2)

u′′′

u′ − μ − (n − 2)(u′′)2

(u′)2

)
≥ 0 (4.1)

on (a, b).
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Remark 4.1 This shows that, given a warping function u > 0 such that the derivatives
of u are bounded on (a, b), and any α �= 1

n−2 , there is a choice of Einstein metric gN

so that the metric admits a GQE structure on (a, b).

From formula (3.5) an equivalent way to state this result is as follows.

Proposition 4.2 Let (U,h), (N,gN), and α be as above. Then (U, e
2f
n−2 h,f,α,λ) is

a GQE manifold for some λ and f if and only if

(1) Rich(
∂
∂t

, ∂
∂t

) ≥ Rich(X,X) on (a, b), when α < 1
n−2 , and

(2) Rich(
∂
∂t

, ∂
∂t

) ≤ Rich(X,X) on (a, b), when α > 1
n−2 .

Example 4.3 We consider the concrete example

h = dt2 + e2t gN

so that
(

1

n − 2
− α

)(
f ′)2 = −μe−2t

by (3.5). If gN has Einstein constant μ < 0, we may choose α = 0, for instance, so
that f equals

f (t) = ±√−μ(n − 2)e−t + C.

If μ > 0 we can choose α = 2
n−2 , for instance, and so f (t) = ±√

μ(n − 2)e−t + C.
Finally, if μ = 0, then h is Einstein.

This construction also works in polar coordinate neighborhoods.

Proposition 4.4 Suppose that

U = BR(0)

h = dt2 + u′(t)2gSn−1

is a polar coordinate neighborhood of a smooth metric h, and suppose that α = α(t)

is a smooth function on U , never equal to 1
n−2 . Then (U, e

2f
n−2 h,f,α,λ) is a GQE

manifold for some λ and f if and only if (4.1) holds on [0,R) with μ = n − 2.

Proof Define f (t) to solve (3.5) on (0,R) (where v = u′). We know that u′ → 0 as
t → 0. From the smoothness of the metric, it also follows that

Rich

(
∂

∂t
,

∂

∂t

)
−→ Rich(X,X) as t → 0.

Since α �
1

n−2 as t → 0, f extends to a smooth function on U with a critical point
at t = 0. �

If we do not prescribe α, these propositions give the following corollary.
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Corollary 4.5 Let (U,h) be any warped product over a one-dimensional base with
fiber metric gN Einstein. If h has non-constant curvature at almost every point, then

there are functions α = α(t), f = f (t), and λ = λ(t) such that (U, e
2f
n−2 h,f,α,λ) is

a complete generalized quasi-Einstein structure.

Proof First define α(t) so that it has the following properties:

• α(t) < 1
n−2 at points in (a, b) where, Rich(

∂
∂t

, ∂
∂t

) ≥ Rich(X,X),

• α(t) > 1
n−2 at points in (a, b) where, Rich(

∂
∂t

, ∂
∂t

) ≤ Rich(X,X), and

• α(t) = 1
n−2 at points in (a, b) where, Rich(

∂
∂t

, ∂
∂t

) = Rich(X,X).

Defining f (t) via (3.5), we have a GQE manifold structure on (a, b) × N . By the
hypothesis on curvature, f ′ vanishes only on a set of measure zero. If h is a type (I)
warped product, this gives a GQE structure on U . Then we can also choose α(t) →

1
n−2 fast enough as t limits to a and b so that we can make f ′(t) blow up at the

endpoints so that s(t) = ∫ t

0 e
f

n−2 dt limits to −∞ as t → a+ and limits to ∞ as t →
b−. This implies that e

2f
n−2 h is a complete metric of type (I).

When we have a type (II) or (III) warped product, we also must modify α so that
f extends to a smooth function in the polar coordinate neighborhood. To do this,
choose α such that

Rich

(
∂

∂t
,

∂

∂t

)
− Rich(X,X) = o

(
1

n − 2
− α

)

as t → a or b, and so that the same condition holds for all derivatives.
In the type (III) case this gives us the desired complete metric. In the type (II) case

we obtain a complete metric by controlling the asymptotics of α in the same way as
in the type (I) case. �

Remark 4.6 As this construction shows, the function α(t) is not unique.

Remark 4.7 If n = 3, it is possible to have solutions in the f = f (t) case such that
α is a function of both t and x. By Schur’s lemma applied to gN , these examples are
not possible in dimension above three.

For example, let Σ be any surface with Gauss curvature μ(x). The metric

h = dt2 + cosh2(t)gΣ

with f (t) = ∫ t

0
dr√

cosh(r)
and α = 1 + 1+μ(x)

cosh(t)
satisfies (3.1). Moreover, f is bounded,

so g = e2f h is complete, provided Σ is chosen to be complete.

4.2 The f (x) Case

In this section we construct non-Einstein examples in the f = f (x) case with dimen-
sion n ≥ 4. The approach is to begin with a metric gN on an (n − 1)-manifold N
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satisfying

RicgN
=

(
1

n − 2
− α

)
df ⊗ df + PgN (4.2)

for some function f on N and constants α �= 1
n−2 and P .

Example 4.8 The simplest example of a metric solving (4.2) is a product metric gN =
dy2 + gF where gF is an Einstein (n − 2)-manifold with Einstein constant P . If
P = 0, then we obtain a Ricci-flat metric so f is constant. However, if P < 0 we
may choose α < 1

n−2 constant to obtain a solution with f a linear function of y. We

also obtain solutions when P > 0 by letting α > 1
n−2 be constant.

We point out that one may obtain examples with f bounded in the case P �= 0 by
choosing α = α(y) appropriately. In particular, if gF is chosen to be complete, one

may find complete GQE metrics g = e
2f
n−2 h in the f = f (x) case, where h is given

in (4.3) in the construction below.
To construct nontrivial examples in the P = 0 case, we take the complete metric

gN = dy2 + (1 + y2)gSn−2 for n ≥ 4. The Ricci curvature of gN is

RicgN
= − n − 2

(1 + y2)2
dy2.

Choosing α = 1
n−2 +n−2 and f (y) = arctan(y) ensures that (4.2) holds with P = 0.

Moreover, since f is bounded, g = e
2f
n−2 h will be complete.

Let Q ∈R and define

h = dt2 + v(t)2gN, (4.3)

where v(t) is a nonzero solution to v′′ = − Q
n−1v that is nonnegative over the range

of t . Direct calculation shows that

Rich =
(

1

n − 2
− α

)
df ⊗ df + QgN,

where v solves (3.9), restated here for convenience:

(
v′)2 + Q

n − 1
v2 = P

n − 2
.

By rescaling gN , we normalize so that P = n−2,0, or −(n−2). There are six cases,
up to an affine change of variable in t :

(1) If P = n − 2, there are three cases:
(a) v(t) = sin(t),Q = n − 1,
(b) v(t) = t,Q = 0, and
(c) v(t) = sinh(t),Q = −(n − 1).
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(2) If P = 0, there are two cases:
(a) v(t) = 1,Q = 0 and
(b) v(t) = et ,Q = −(n − 1).

(3) If P = −(n − 2), there is only one case:
(a) v(t) = cosh(t),Q = −(n − 1).

4.3 Conformal Changes

For the examples constructed in the last two subsections, we show that around every
point the metric admits local non-homothetic conformal changes preserving the GQE
structure.

Proposition 4.9 Let h1 = dt2 + u′(t)2gN , and suppose that there are functions f ,
Q1, and α such that

Rich1 =
(

1

n − 2
− α

)
df ⊗ df + Q1h1. (4.4)

Then h2 = u−2h1 satisfies

Rich2 =
(

1

n − 2
− α

)
df ⊗ df + Q2h2, (4.5)

where Q2 = (n − 1)(
Q1
n−1u2 + 2u′′u − (u′)2).

Proof This essentially follows from the observation that the steps in the proof of
Lemma 3.6 can be reversed. Namely, we know that, for the metric h1, we have

Hessh1u = �h1u

n
h1.

Therefore, the formula for the change of the Ricci tensor tells us that:

Rich2 = Rich1 + (n − 2)
Hessh1u

u
+ (

u−1�h1u − (n − 1)|∇u|2h1
u−2)h1

= Rich1 + (n − 1)

(
2

n
u−1�h1u − |∇u|2h1

u−2
)

h1

=
(

1

n − 2
− α

)
df ⊗ df + (n − 1)

(
Q1

n − 1
u2 + 2

n
u�h1u − |∇u|2h1

)
h2.

The formula then follows from �h1u = nu′′ and |∇u|2h1
= (u′)2 on h1. �

As a corollary we obtain conformal diffeomorphisms between the generalized
quasi-Einstein manifolds constructed in the previous subsections.

Corollary 4.10 Let (U, e
2f
n−2 h,f,α,λ1) be a GQE manifold with h1 = dt2 +

u′(t)2gN for some function u(t). Then there is a function λ2 such that (U,u−2e
2f
n−2 h,

f,α,λ2) is also a GQE manifold.
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Proof Set h1 = h, g1 = e
2f
n−2 h1, h2 = u−2h1, and g2 = e

2f
n−2 h2. From Proposition 3.1

we know that (4.4) holds, with

Q1 = 1

n − 2

(
�g1f − |∇f |2g1

+ (n − 2)λ1
)
e

2f
n−2

= �h1f

n − 2
+ λ1e

2f
n−2 .

Proposition 4.9 then implies that (4.5) holds, with

Q2 = (n − 1)

(
u2 Q1

n − 1
+ 2u′′u − (

u′)2
)

= u2�h1f

n − 2
+ λ1e

2f
n−2 u2 + (n − 1)

(
2u′′u − (

u′)2)
.

Direct computation now shows:

λ2 = (
λ1e

2f
n−2 u2 + uh(∇u,∇f ) + (n − 1)

(
2u′′u − (

u′)2))
e

−2f
n−2 .

Note that the term uh(∇u,∇f ) vanishes in the f = f (x) case and equals uu′f ′ in
the f = f (t) case. �

We can also see that h2 is isometric to a warped product over a one-dimensional
base with the same fiber as h1; see the proof of Theorem 1.2 in Sect. 3.3.

Also note that we have, in fact, constructed a one-parameter family of conformal
changes, as we can choose u to be any anti-derivative of the warping function. The
next elementary example (which also appears in [22]) shows that the choice of anti-
derivative does impact the behavior of the conformally changed metric.

Example 4.11 Suppose that we have the standard round metric on Sn:

dr2 + sin2(t)gSn−1 .

Then we can choose u(t) = c − cos(t). The choice c > 1 gives a function u which is
positive everywhere on the sphere, and the conformally changed metric will also be a
round sphere (of possibly different curvature). When c ≤ 1, u will not be positive, so
we do not have a global conformal change. However, when c = 1 we obtain stereo-
graphic projection from the sphere minus a point to Euclidean space. When 0 < c < 1
we obtain a conformal change from a portion of the sphere to a portion of hyperbolic
space, possibly rescaled.

We also note that with a rotationally symmetric metric (i.e., if u′ vanishes some-
where), it is always possible to choose the conformal factor u to be positive every-
where: since u′(t) > 0, u is bounded from below and thus can be made positive by
adding a suitable constant.
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5 Conformal Fields

We prove local and global classification results for GQE manifolds admitting confor-
mal fields. In this section we assume:

(1) (M,g,f,α,λ) is a GQE manifold with α �= 1
n−2 ,

(2) V is a vector field on M such that LV g = 2ηg, with η non-constant (i.e., V is a
non-homothetic conformal field), and

(3) V preserves the GQE structure, in the sense that DV f equals a constant c, and
DV α = 0.

First, note that V is also a non-homothetic conformal field for h = e− 2f
n−2 g:

LV h = 2

(
η − c

n − 2

)
h.

We define σ = η − c
n−2 .

Next, we make the following observations. If φt is the local flow of V about some
point, then φ∗

t g = w−2
t g for a smooth family of functions wt . The smooth family ut =

wte
C(t)
n−2 (where φ∗

t f = f +C(t)) satisfies φ∗
t h = u−2

t h, and therefore solves (2.1) for

each t with respect to h = e− 2f
n−2 g, by the proof of Lemma 3.6. Differentiating in t ,

we find that η satisfies equation (2.1) on M2 (even though the local flows of V may
not be globally defined). Following the same arguments as in Sect. 3, we have:

Observation 5.1 The non-constant function σ satisfies (2.1), and the local and
global classification results (Lemmas 3.6, 3.8, 3.9 and Theorems 1.2 and 1.6) hold in
the present case, with u replaced by σ .

Consequently, h is of the form (locally or globally)

h = dt2 + σ ′(t)2gN (5.1)

for t ∈ I . We similarly define f = f (t) (resp., f = f (x)) to mean ∇f is parallel
(resp. orthogonal) to ∇σ .

We are therefore led to study conformal fields on a warped product over a one-
dimensional base. We fix notation for V by writing

V = v0(t, x)
∂

∂t
+ Vt ,

where v0 is some function on I × N , and Vt is the projection of V onto the factor
{t} × N . Some general facts regarding this case are collected in the statement below,
which follows immediately from Proposition A.1 in Appendix A.

2An alternative approach is to apply the Lie derivative with respect to V to equation (3.1), making use of
formula (3.2) of [22]: LV Rich = −(n − 2)Hesshσ − �σ · h.
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Proposition 5.2 A vector field V satisfies

LV h = 2σh,

with h given by (5.1) if and only if

(1) Vt is a conformal field for gN for each t with LVt gN = 2ωtgN ,

(2) ∂
∂t

(
v0
σ ′ ) = ωt

σ ′ , and

(3) ∂Vt

∂t
= − 1

(σ ′)2 ∇Nv0.

Moreover, σ = v0σ
′′

σ ′ + ωt = ∂v0
∂t

.

We consider separately the cases in which f = f (t) and f = f (x), with the goal
of classifying the structures of g and V , both locally and globally.

5.1 f = f (t) Case

The first observation is that f is constant when c = 0.

Proposition 5.3 If f = f (t) and DV f = 0, then f is constant.

Proof Suppose I is an open interval on which f ′(t) �= 0. The condition DV f = 0 is
equivalent to v0(t, x)f ′(t) = 0, so v0 = 0 on I . From Proposition 5.2, σ = ∂v0

∂t
= 0

on I . This contradicts the fact that the zeros of σ are isolated. �

The following corollary is a special case.

Corollary 5.4 Suppose σ has a critical point at p ∈ M . Then f is constant on any
polar coordinate neighborhood of p.

Proof If dσ(p) = 0, then h admits polar coordinates about p and f = f (t). By
smoothness, df (p) = 0. Since DV f is constant, it is identically zero. �

Now we may prove Theorem 1.7 from the Introduction, restated below for the
reader’s convenience.

Theorem 5.5 Suppose (M,g,f,α,λ) is a complete GQE manifold, with α �= 1
n−2 ,

that admits a structure-preserving non-homothetic conformal field: LV g = 2ηg. If η

has a critical point (e.g., if M is compact), then f is constant and (M,g) is isometric
to a simply connected space form.

Proof (M,h) admits a polar coordinate neighborhood U about a critical point p of
σ with f = f (t) on U , so that g is rotationally symmetric with pole p. By Corol-
lary 5.4, f is constant on U . In the compact case, U covers M except for a point, so
f is constant; in the non-compact case, U = M , and f is constant. Thus g is Ein-
stein. Complete, rotationally symmetric Einstein manifolds are well known to be the
simply connected space forms. �
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Thus, we restrict to the case in which M is non-compact and σ has no criti-
cal points; from the previous results, we may also assume c �= 0, so that f ′ never
vanishes. We assume h is of the form (5.1) on U = I × N , and where σ ′ > 0 on
I = (a, b). We have that v0 = c

f ′(t) and in particular, v0 is a function of only t and
never vanishes. Corollaries A.2 and A.3 imply that Vt is independent of t , ω := ωt is
constant, and v0 and σ solve

σ = σ ′′
(

A + ω

∫
dt

σ ′

)
+ ω

v0 = σ ′
(

A + ω

∫
dt

σ ′

)

for some constant A. Defining r(t) = ∫
dt
σ ′ , an increasing function of t , these equa-

tions become

σ = σ ′′(A + ωr) + ω (5.2)

v0 = σ ′(A + ωr). (5.3)

Note that we have not yet used the GQE structure; doing so yields the following.

Lemma 5.6 Suppose (U,h), V , and σ are as above. If (U,h,f,α,λ) is a GQE
manifold, V preserves the GQE structure, and f = f (t), then

(1) σ is a solution to (5.2) for some constants A and ω,
(2) V = v0(t)

∂
∂t

+ V0 where v0 is given in terms of σ by (5.3) and is non-zero on
(a, b), and V0 is a fixed homothetic field for gN with expansion factor ω,

(3) f (t) = ∫
c

v0(t)
dt , and

(4) α = K1 + K2μ(x) where Ki is are explicit constants determined by A, ω, σ , c,
and n (see (5.6)), and RicgN

= μ(x)gN .

Conversely, if A,ω,σ,V,f,α,gN,K1,K2, and c satisfy (1)–(4), then (U,h,f,α,λ)

is a GQE manifold with structure-preserving conformal field V .

Remark 5.7 In particular, α is constant if n > 3. The proof will also show that α is
constant if n = 3 and ω �= 0.

We have already established (1)–(3) above. Before proving (4), we note the fol-
lowing fundamental fact about solutions to (5.2).

Proposition 5.8 A function σ solves (5.2) if and only if the quantity

K = (A + ωr)
(
σ ′)2 − σ(σ − ω) (5.4)

is constant.

Remark 5.9 When ω = 0 this is the well-known fact that A(σ ′)2 − σ 2 is constant for
solutions to σ ′′ = σ

A
.
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Proof Differentiate with respect to t and use dr
dt

= 1
σ ′ :

d

dt

(
(A + ωr)

(
σ ′)2 − σ(σ − ω)

) = ω
dr

dt

(
σ ′)2 + 2(A + ωr)σ ′σ ′′ − 2σσ ′ + ωσ ′

= 2σ ′((A + ωr)σ ′′ + ω − σ
)
. �

Proof of Lemma 5.6 In order to have a GQE structure, the Ricci curvature of h must
be given both from the warped product formula (3.4) and from (3.1), leading to

(
1

n − 2
− α

)
f ′(t)2 = −(n − 2)

(
σ ′′′(t)
σ ′(t)

− σ ′′(t)2

σ ′(t)2

)
− μ(x)

σ ′(t)2
. (5.5)

We rewrite (5.2) as

σ ′′ = σ − ω

A + ωr
.

Differentiating this equation with respect to t yields

σ ′′′

σ ′ = 1

A + ωr
− ωσ ′′

(σ ′)2(A + ωr)
.

Substituting into formula (5.5) gives

(
1

n − 2
− α

)
f ′(t)2 = −(n − 2)

(
σ ′′′

σ ′ − (σ ′′)2

(σ ′)2

)
− μ(x)

σ ′(t)2

= −(n − 2)

(
(σ ′)2(A + ωr) − σ(σ − ω)

(σ ′)2(A + ωr)2

)
− μ(x)

σ ′(t)2
.

On the other hand,

f ′(t) = c

v0
= c

σ ′(A + ωr)
,

and (A + ωr)(σ ′)2 − σ(σ − ω) = K is constant, implying

α = 1

n − 2
+ (n − 2)K + μ(x)(A + ωr)2

c2
.

However, if ω �= 0, in order for gN to admit a non-Killing homothetic field, it must
be flat (cf. p. 242 of [18]). Therefore, we have

α =
⎧
⎨

⎩

1
n−2 + (n−2)K+μ(x)A2

c2 , ω = 0
1

n−2 + (n−2)K

c2 , ω �= 0.
(5.6)

�

We separately analyze the cases in which ω = 0 and ω �= 0. If ω = 0, then A �= 0,
and the possible solutions to (5.2) are (up to shifting t and rescaling V and σ ): σ(t) =
cos(κt), σ(t) = eκt , σ(t) = sinh(κt), or σ(t) = cosh(κt), where κ =

√
1

|A| . These all

produce local examples.
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We are interested in determining when it is possible to construct an example with
g complete. To simplify notation, we assume κ = 1.

Example 5.10 Suppose σ(t) = sinh(t), and

h = dt2 + cosh(t)2gN,

f =
∫ t

0

dr

cosh(r)
,

V = cosh(t)
∂

∂t
+ X,

where N is any complete space with RicgN
= μgN , with Killing field X (possibly

zero). One can readily check that V is a conformal field for g = e
2f
n−2 h (with ω = 0)

with expansion factor η = sinh(t)+ 1
n−2 , that DV f = 1, and that g is complete (since

f is bounded). Moreover, choosing α so that

α = 1

n − 2
+ n − 2 + μ

assures that (M,g,f,α,λ) is a GQE manifold for some λ.

Example 5.11 A similar example occurs with cosh(t) replaced with et and

α = 1

n − 2
+ μ.

However, in this case, f is given by −e−t (up to a constant), and the conformal metric

g = e
2f
n−2 h is necessarily incomplete.

Example 5.12 Suppose σ(t) = cosh(t), so that σ has a critical point at t = 0. Then
h is defined only on (0,∞) (or its negative), and the arc length with respect to g is
given up to constants by

s(t) =
∫ t

1
exp

(
c

n − 2

∫ z

1

dy

sinh(y)

)
dz.

However, limt→0− s(t) is finite, so that g is incomplete. A similar argument applies
if σ(t) = cos(t).

Next, we move on to the case in which ω �= 0. Perform the change of variables
r = ∫ t

0
dt

σ ′(t) . Since dσ
dr

= ( dσ
dt

)2, (5.4) becomes

dσ

dr
= K + σ(σ − ω)

A + ωr
.

Separating variables and completing the square produces:
∫

dσ

K − ω2

4 + (σ − ω
2 )2

=
∫

dr

A + ωr
= 1

ω
ln |C(A + ωr)|,
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for some constant C > 0. Let B = K − ω2

4 . There are three cases depending on the
sign of B .

• If B = 0 then σ(r) − ω
2 = −ω

ln |C(A+ωr)| .
• If B > 0 then σ(r) − ω

2 = √
B tan(

√
B ln |C(A + ωr)|).

• If B < 0 then

σ(r) − ω

2
= √−B tanh

(√−B ln |C(A + ωr)|)

= √−B
|C(A + ωr)|2

√−B − 1

|C(A + ωr)|2√−B + 1
.

Computing the derivative of f with respect to r using f ′(t) = c
v0(t)

and (5.3) gives

df

dr
= c

A + ωr
.

So f (r) = c ln(D|A + ωr|) for a constant D > 0.
Thus, we have completely determined the local structure of g,f , and V in the

ω �= 0 case. Conversely, given constants ω �= 0, c �= 0, C > 0,D > 0, A,B , we can
use the above formulas for f (r) and σ(r) to construct local examples; the parameter t

may be recovered by t (r) = ∫ √
σ ′(r)dr . Next, we are interested in analyzing which

of these examples is complete.
We begin with a function σ(r) of one of the three forms above, defined on a

maximal interval I such that dσ
dr

> 0. To simplify calculations we assume that ω = 1
by rescaling V and σ ; A = 0 by shifting s; D = 1 by shifting f ; and r > 0 by
symmetry. In each of the following cases, f (r) = c ln(r).

• If B = 0, then

σ(r) = 1

2
− 1

ln(Cr)
,

dσ

dr
= 1

r ln(Cr)2
.

σ is undefined at r = 1/C, so we consider I = (0,1/C) or (1/C,∞). The arc-
length parameter for g is given by

s(r) =
∫

e
f

n−2 dt =
∫

r
c

n−2

(
1

r1/2 ln(Cr)

)
dr

=
∫

r
2(c+1)−n

2(n−2)

ln(Cr)
dr.

By analyzing the limiting behavior of s(r) at r = 0+,1/C±, and ∞, we find that
g is complete with I = (0,1/C) if and only if c ≤ −n−2

2 and with I = (1/C,∞)

if and only if c ≥ −n−2
2 .
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• If B > 0, then

σ(r) = 1

2
+ √

B tan
(√

B ln(Cr)
)
,

dσ

dr
= B sec2(

√
B ln(Cr))

r
.

We take the interval I = ( 1
C

e
−π/2+k√

B , 1
C

e
π/2+k√

B ) for any integer k. t is given by

t =
∫ √

B sec(
√

B ln(Cr))√
r

dr,

which implies that t is defined on (−∞,∞). Since f is bounded in this case, g is
complete.

• If B < 0, then

σ(r) = 1

2
+ √−B

|Cr|2
√−B − 1

|Cr|2√−B + 1
,

dσ

dr
= −4B|Cr|2

√−B−1

(|Cr|2√−B + 1)2
,

and we take I = (0,∞). The arc length with respect to g is:

s(r) =
∫

2
√−Br

c
n−2 (Cr)

√−B−1/2

(Cr)2
√−B + 1

. (5.7)

For no values of B < 0,C > 0, c �= 0 does |s(r)| limit to infinity at r = 0 and
r = ∞; thus metrics of this form are incomplete.

At this point we have a full understanding of the f = f (t) case, in both the
ω = 0,ω �= 0 subcases. For future reference, we analyze the completeness of the
conformal field V .

Lemma 5.13 If (M,g) is complete and non-compact in the f = f (t) case, then the
conformal field V is not complete.

Proof Suppose V is complete. By Lemma 5.6, V is of the form V = v0(t)
∂
∂t

+ V0,
where V0 is a fixed homothetic field for gN . If g is complete, so is gN . It follows that
V0 is a complete field (see p. 234 of [18]) on N and extends naturally to a complete
vector field on M . Then V − V0 = v0(t)

∂
∂t

is a complete field on M and therefore
on R. We analyze the two cases.

If ω = 0, then v0(t)
∂
∂t

= cosh(t) ∂
∂t

, which is not a complete field on R by elemen-
tary considerations. This is a contradiction.

If ω �= 0, we can write v0
∂
∂t

as (A + ωr) ∂
∂r

= r ∂
∂r

. The flow of this vector field at
time ε is given by scaling r by eε . Such flows are globally well defined only on R,
(−∞,0), and (0,∞). None of the complete examples we considered above were
defined on such a subset, again leading to a contradiction. �
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5.2 f = f (x) Case

We also analyze the case of a conformal field in the f = f (x) setting, so that n ≥ 4
and Q is constant (by Observation 5.1 and Theorem 1.2). Without loss of generality,
assume f is non-constant. We prove:

Proposition 5.14 If the f = f (x) case occurs, then σ solves

σ ′′′ = − Q

n − 1
σ ′. (5.8)

Moreover, DVt f = c and DVt α = 0, and either:

(1) Vt is a non-homothetic conformal field on gN for some t , or else
(2) Vt is a Killing field on gN , independent of t , v0 = v0(t) is a constant multiple of

σ ′(t), and σ ′(t) is non-constant.

Examples of case (2) are found using Sect. 4.2. After the proof, we demonstrate
that case (1) may occur as well.

Proof First, by Lemma 3.8 and Observation 5.1, σ satisfies (5.8) and α = α(x). Addi-
tionally, since DV f = c and f = f (x), we have DVt f = c for each Vt , and likewise
DVt α = DV α = 0.

By Proposition 5.2, for each t , Vt is a conformal field with expansion factor ωt(x)

on N . If any ωt(·) is non-constant on N , Vt is non-homothetic on N , and we are in
case (1).

Otherwise, ω depends only on t . By (5.8), if σ ′ is constant, then Q = 0. If ωt �= 0
for some t , then gN admits a homothetic field that is non-isometric and so gN is flat.
Combining (3.1) and (3.4) shows that ( 1

n−2 −α)df ⊗ df is pointwise proportional to

gN . By comparing rank, it follows (since α �= 1
n−2 ) that f is constant, a contradiction.

We conclude that ωt is identically zero. But Proposition 5.2 and the constancy of σ ′
imply σ ≡ 0, a contradiction.

Thus, we may assume σ ′ is non-constant, so that σ ′′(t) vanishes only for isolated
t by (5.8). From σ = v0

σ ′ σ ′′ + ωt of Proposition 5.2, we see that v0 = v0(t). Then by
Corollary A.2, Vt is independent of t and ωt = ω is constant in t and x. If ω �= 0, gN

admits a homothetic field that is not Killing, and the same argument as above leads
to a contradiction. Thus ω = 0, and Proposition 5.2 implies v0 is a constant multiple
of σ ′(t). �

We demonstrate that the first case of Proposition 5.14 can occur, at least locally.

Example 5.15 Suppose that (K,hK) is some n-manifold (n ≥ 3) satisfying

RichK
=

(
1

n − 2
− αK

)
df ⊗ df − (n − 1)hK

for a non-constant function f : K → R and some constant αK (cf. Example 4.8).
Define M = R

2 × K with coordinates (t, y) on R
2 and metric

hM = dt2 + cosh2 t
(
dy2 + cosh2 y hK

)
,
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which satisfies

RichM
=

(
1

n
− αM

)
df ⊗ df − (n + 1)hM

for an appropriate constant αM . Note the t-level sets each admit a conformal field
cosh(y) ∂

∂y
with expansion factor sinh(y). We define a vector field V on M by

V =
(

cosh(t) sinh(y)

∫ t

0

ϕ(z)

cosh(z)
dz

)
∂

∂t
+ ϕ(t) cosh(y)

∂

∂y
,

where

ϕ(t) = sin
(
2 arctan

(
tanh(t/2)

))
.

Direct calculation (using Proposition A.1) shows that V is a conformal field of h with
expansion factor σ(t, y) = sinh(y)(sinh(t)

∫ t

0
ϕ(y)

cosh(y)
dr + ϕ(t)); its restriction Vt to

a level set of t is a conformal field with expansion factor ωt(y) = ϕ(t) sinh(y); in
particular, Vt is non-homothetic for almost all t ∈ R.

Moreover, V preserves the GQE structure of (M,e
2f
n hM): DV f = 0, since f is a

function on K , and DV αM = 0 since αM is constant.

Remark 5.16 In the above example, hM admits a warped product structure with re-
spect to the level sets of σ , by our classification theorem. However, we point out this
structure is not apparent from the expression of hM in coordinates t, y.

5.3 Complete Conformal Fields

Here we prove the generalization of the theorem of Yano and Nagano on complete
conformal fields on Einstein spaces stated in the Introduction.

Proof of Theorem 1.8 Suppose (M,g,f,α,λ) is a complete GQE manifold equipped
with a structure-preserving non-homothetic conformal vector field V : LV g = 2ηg.
Assume V is complete. If η has a critical point, then by Theorem 5.5, (M,g) is a
space form and f is constant. However, the round sphere is the only space form
admitting a complete non-homothetic conformal field.

Otherwise, M is non-compact, σ = η − c
n−2 has no critical points, and the work

of Sects. 5.1 and 5.2 applies. If f = f (t), then Lemma 5.13 implies that V is incom-
plete, a contradiction. Thus f = f (x) on M .

In this case, since g is complete, Theorem 1.2 and Observation 5.1 imply that h

is a one-dimensional warped product defined for all t ∈ R. Since σ ′ solves (5.8) and
has no zeros we conclude that σ ′(t) is (up to an overall scaling of σ and of V , and

a translation of t) equal to 1, eκt , or cosh(κt), where κ =
√

−Q
n−1 . If σ ′ ≡ 1, then by

Proposition 5.2, σ ′ = ωt , which implies ωt depends only on t . This contradicts part
(2) of Proposition 5.14.

On the other hand, the following argument, which is an adaptation of Yano–
Nagano’s argument in the Einstein case, shows that ∇σ must be a complete field if
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V is complete. This is a contradiction, since eκt ∂
∂t

and cosh(κt) ∂
∂t

are not complete
fields on R.

Computing the Laplacian on the warped product h gives

L∇σ h = 2
�σ

n
h

= 2σ ′′h.

However, by Proposition 5.14, σ ′′ = − Q
n−1σ + c0, where Q and c0 are constants. In

particular, W = Q
n−1V + ∇σ satisfies LWh = 2c0h. In the metric g,

LWg =
(

2DWf

n − 2
+ c0

)
g.

However, DWf is constant, since DV f is constant and ∇σ is orthogonal to ∇f . It
follows that W is a homothetic field for the complete metric g, and so W is complete
(see p. 234 of [18]). Since the set of complete conformal fields on a Riemannian
manifold forms a Lie algebra, ∇σ is complete, a contradiction to the form of σ . �

6 Gradient Ricci Solitons and m-Quasi-Einstein Metrics

In this section we specialize to the case where α and λ are constant, first obtaining
some rigidity for the function Q of Proposition 3.1.

Proposition 6.1 If (M,g,f ) is a complete gradient Ricci soliton or a complete
m-quasi-Einstein manifold, then Q is constant if and only if f is constant.

Proof First note that if f is constant, the same is true for Q by definition. Now we
prove the converse.

Gradient Ricci soliton case: If g is a gradient Ricci soliton (α = 0 and λ constant)
we have the following formula due to Hamilton (see Proposition 1.15 of [11] for a
proof):

�f − |∇f |2 = −2λf + c, (6.1)

for some constant c. Plugging into the formula for Q (3.3), we obtain

Q = 1

n − 2

(−2λf + c + (n − 2)λ
)
e

2f
n−2 .

From this, one can see that if dQ vanishes identically and df �= 0 at some point, then
λ = c = 0. Then we have

�f − |∇f |2 = 0.

Moreover, �f = −R from the trace of the soliton equation, where R is the scalar
curvature of g. In particular,

−R − |∇f |2 = 0.
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However, Chen has shown that if λ = 0 then R ≥ 0 [10] (cf. [33, 34]), implying
R = |∇f | = 0 when c = 0.

m-quasi-Einstein case: If g is m-quasi-Einstein (m > 0, α = −1
m

, and λ constant) we
have the equation proven by Kim–Kim [17] that

�f − |∇f |2 = m
(
λ − μe

2f
m

)

for some constant μ, which gives

Q = 1

n − 2

(
(n + m − 2)λ − μe

2f
m

)
e

2f
n−2 .

If dQ vanishes identically and df �= 0 at some point, then λ = μ = 0. By a result of
Case, f is constant [5]. �

Corollary 6.2 Suppose (M,g,f ) is a complete gradient Ricci soliton or a com-
plete m-quasi-Einstein manifold. If (M,g,f ) admits a non-homothetic structure-
preserving conformal diffeomorphism or conformal field, then only case (1.2) in The-
orem 1.2 may occur.

Proof In the f = f (x) case, Q is constant by Lemma 3.8 (and Observation 5.1 in
the case of a conformal field). Then f is constant, so we may say without loss of
generality that f = f (t). �

When the constant λ is nonnegative, we also have the following.

Proposition 6.3 If a complete gradient Ricci soliton or complete m-quasi-Einstein
metric (M,g) of the form (1.2),

g = ds2 + v(s)2gN,

with gN Einstein has λ ≥ 0, then either g is rotationally symmetric (on R
n or Sn), or

v is constant and g is the product metric on R× N .

Proof The result follows from the work of various authors. The main observation is
that a complete metric of type (I) (see Definition 2.1) of the form (1.2) contains a
line in the s-direction: a geodesic defined on (−∞,∞) that is minimizing on all its
sub-segments.

In the m-quasi-Einstein case, a version of the Cheeger–Gromoll splitting theo-
rem holds if λ ≥ 0 [12]. Therefore, if g is not a product then it must be rotationally
symmetric (i.e., type (II) or (III)). In fact, if λ > 0, M must be compact [30].

If (M,g) is a gradient Ricci soliton, we may, without loss of generality, replace
gN with a space form of the same dimension and with the same Einstein constant.
In particular, (M,g) is now locally conformally flat. Locally conformally flat gradi-
ent Ricci solitons with λ ≥ 0 are classified [4], however, we do not need the entire
argument in this special case. Indeed, by the work of Chen [10] and Zhang [35] (cf.
Proposition 2.4 of [4]) a locally conformally flat gradient Ricci soliton with λ ≥ 0
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either has positive curvature operator or is a product. However, by the classical split-
ting theorem of Toponogov, a space with positive curvature cannot contain a line, so
a type (I) gradient Ricci soliton with λ ≥ 0 must be a product. �

We now prove our main result on Ricci solitons stated in Sect. 1.

Proof of Theorem 1.9 The first claim that g1 and g2 are metrics of the form (1.2)
follows from Theorem 1.2 and Corollary 6.2.

When g1 is a complete shrinking or steady soliton, we also know from Proposi-
tion 6.3 that g1 is either rotationally symmetric (on R

n or Sn) or a product. From
the work of Kotschwar [19] and Bryant [3], the only complete rotationally symmet-
ric gradient Ricci solitons with λ1 ≥ 0 are the round sphere, flat Rn, and the Bryant
soliton. In the flat case there are two rotationally symmetric gradient Ricci soliton
structures with f = f (s) on g1 = ds2 + s2gSn−1 : one where f is constant and λ1 = 0
and the other where f is the Gaussian density, f = λ1

2 s2 +b. We will refer to the soli-
tons in the first case as flat Euclidean solitons and to the second case as flat Gaussian
solitons.

If g1 is a product R×N and f1 = f1(t), we have that Hessf1 = f ′′
1 dt2, so that gN

must be Einstein. By [15] any non-trivial compact gradient Ricci soliton is shrinking,
so the compact result follows from the complete one. (In the trivial case in which f1

is constant, we can appeal to Theorem 1.6.)
The next claim, that if g2 is also a soliton, then both spaces are round spheres or φ

is inverse stereographic projection, appears at the end of the section as Corollary 6.8.
Finally, we prove that a complete gradient Ricci soliton (M,g,f ) admitting a

non-homothetic, structure-preserving conformal field V is Einstein with f constant.
If M is compact, then the first part of the proof, applied to the flow of V , implies that
f is constant. Thus, we assume M is non-compact and f is non-constant and appeal
to the classification derived in Sect. 5.1. Since we consider a complete Ricci soliton,
only the f = f (t) case occurs by Corollary 6.2. There are a couple cases to consider,
in which f and σ are known explicitly.

Suppose ω = 0. By translating t and rescaling σ , we have that σ(t) = 1
κ

sinh(κt),
f ′ = c

A cosh(κt)
for nonzero constants κ, c, and A, and

h = dt2 + cosh2(κt)gN .

We compute Rich(
∂
∂t

, ∂
∂t

) using both (3.2) and (3.4) to show that

λ = e− 2f
n−2

(
−κ2(n − 1) − 1

n − 2

(
f ′)2

)
− 1

n − 2

(
�gf − |∇f |2g

)
,

where g = e
2f
n−2 h satisfies Ricg + Hessgf = λg. Next, using the conformal relation

between g and h, we find

�gf − |∇f |2g = e− 2f
n−2 �hf,
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and, by computing the Laplacian on a warped product,

�hf = f ′′ + κ(n − 1)f ′ sinh(κt)

cosh(κt)
.

Thus,

λ = e− 2f
n−2

(
−κ2(n − 1) − 1

n − 2

(
f ′′ + (

f ′)2 + κ(n − 1)f ′ sinh(κt)

cosh(κt)

))
.

Elementary analysis shows that λ is non-constant.
Finally, suppose ω �= 0. In this case, gN admits a homothetic field that is not

Killing, so gN is flat. Working in the variable r = ∫ t

0
dt

σ ′(t) , we have

h = dt2 + σ ′(t)2gN = σ ′(t)2(dr2 + gN

)
.

The metric g is given by

g = e
2f (r)
n−2 σ ′(r)

(
dr2 + gN

)
.

Let ϕ = f
n−2 + 1

2 logσ ′(r), so that g = e2ϕ(dr2 +gN). We use this conformal relation
to find

Ricg

(
∂

∂r
,

∂

∂r

)
= −(n − 1)ϕ′′

Hessgf

(
∂

∂r
,

∂

∂r

)
= f ′′ − ϕ′f ′,

where all derivatives are with respect to r . In particular, if Ricg + Hessgf = λg, then

λ = −(n − 1)ϕ′′ + f ′′ − ϕ′f ′.

Using f ′(r) = c
r
, straightforward computations show

λ = −n − 1

2

(
σ ′′′

σ ′ − (σ ′′)2

(σ ′)2

)
− cσ ′′

2rσ ′ − c(c − 1)

(n − 2)r2
.

If B = 0, we have σ(r) = 1
2 − 1

ln(Cr)
. If B > 0, then σ(r) = 1

2 +√
B tan(

√
B ln(Cr)).

Elementary analysis shows that λ is not constant in either case.
We conclude that f must in fact be constant, so that (M,g) is Einstein. �

Remark 6.4 As an addendum to the proof of the last statement: Kanai showed a com-
plete Einstein space admitting a non-homothetic conformal field belongs to the fol-
lowing list, up to rescaling [16] (cf. Theorem 2.7 of [22]): a round sphere, Euclidean
space, hyperbolic space, a warped product ds2 + e2sgN (where N is Ricci-flat), or a
warped product ds2 + cosh2(s)gN (where N has Einstein constant −(n − 2)).
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We close with examples of Ricci solitons g1 admitting structure-preserving con-
formal changes to GQE metrics g2, making use of Corollary 4.10. These examples
will be used in the proof of Corollary 6.8.

Example 6.5 Product soliton We consider the case in which g1 = ds2 + gN , where
gN is Einstein with Einstein constant λ1. f1 = f1(s) is necessarily of the form

f1(s) = λ1

2
s2 + as + b,

for some constants a and b. Assume f1 is not constant.
First we consider the case λ1 = 0. By adding a constant to f1, we may assume

f1(s) = as, a �= 0. Then we have

h1 = e
−2as
n−2 g1 = dt2 + e

−2as
n−2 gN,

where dt = e
−as
n−2 ds. u is a solution to du

dt
= e

−as
n−2 , which implies that du

ds
= e

−2as
n−2 . So

u(s) = −n−2
2a

e
−2as
n−2 + C and we have

g2 = Ku−2g1 = K
(
dτ 2 + u−2gN

)
,

where K is a positive constant and τ(s) = ∫
u(s)−1ds.

If a and C have different signs, then |u| > 0 for all s, giving a global conformal
change g2 = Ku−2g1. Note that τ is always either bounded above or below (depend-
ing on the sign of a), so g2 is not complete. If a and C have the same sign, then u has
a zero, and the conformal change is not global.

In the case λ1 �= 0, by shifting s and adding a constant to f1 we can assume that
f1(s) = λ1

2 s2. Then we have

h1 = e
−λ1s2

n−2 g1 = dt2 + e
−λ1s2

n−2 gN,

where dt = e
−λ1s2

2(n−2) ds. We have du
ds

= e
−λ1s2

n−2 , so that u(s) = C + ∫ s

0 e
−λ1p2

n−2 dp and
g2 = Ku−2g1. By Corollary 4.10, g2 is a gradient Ricci almost soliton with potential
f = f1.

Note that when λ1 > 0, u(s) is bounded which implies that we can choose C large
enough so that u does not vanish and that g2 is complete if g1 is. When λ1 < 0, u will
always have a zero, so there is no global conformal change.

In the case λ1 ≥ 0, we point out that (g2, f ) is not a gradient Ricci soliton. To
see this, we note Hessg1u = u′′(s)ds2 and �g1u = u′′(s) and compute (where prime
denotes a derivative with respect to s):

Ricg2 = (n − 1)

(
u′′

u
− (u′)2

u2

)
ds2 +

(
λ1 + u′′

u
− (n − 1)

(u′)2

u2

)
gN

and

Hessg2f =
(

f ′′ + f ′u′

u

)
ds2 − f ′u′

u
gN .
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In order for Ricg2 + Hessg2f to equal λ2g2, we must have

λ2 = (n − 1)
(
uu′′ − (

u′)2) + (
λ1u

2 + λ1suu′)

in the case λ1 > 0, and

λ2 = (n − 1)
(
uu′′ − (

u′)2) + auu′

in the case λ1 = 0. However, in either case, one can explicitly show that λ2 is not
constant.

Example 6.6 (Bryant Soliton) The Bryant soliton is the unique (up to rescaling) com-
plete, rotationally symmetric, steady, gradient Ricci soliton. We write this metric as

g1 = ds2 + w(s)2gSn−1

for s ≥ 0, where w(0) = 0, w′(0) = 1, and w(s) > 0 for s > 0. We also have w =
O(s1/2), w′ = O(s−1/2), w′′ = O(s−3/2), the scalar curvature R is O(s−1) for s

large, and the sectional curvature is everywhere positive (see [3] or Chap. 1, Sect. 4
of [11]). From (6.1) we have

R + |∇f |2 = c

for some positive constant c. Thus, f ′ → ±√
c at infinity, so f = O(s). Since g1 has

positive curvature, Hessf is negative-definite and we conclude f ′ → −√
c at infinity.

Now,

h1 = dt2 + (
e

−f
n−2 w

)2
gSn−1 ,

where dt
ds

= e− f
n−2 , so that

u(s) = C +
∫ s

0
e

−2f (p)
n−2 w(p)dp.

Since s ≥ 0, from the asymptotics of f and w we see that u blows up exponentially
in s. Thus we have a global conformal change to an incomplete metric g2, provided
C > 0.

Finally, we ask whether g2 = u−2g1 is also a Ricci soliton with potential f . As-
sume Ricg2 + Hessg2f = λ2g2. Direct calculation of the ds2 component of this equa-
tion leads to

(n − 1)

(
u′′

u
− w′′

w
+ u′w′

uw
− (u′)2

u2

)
+ f ′′ + f ′u′

u
= λ2u

−2, (6.2)

where all derivatives are with respect to s. Using Ricg1 + Hessg1f = 0, we have

f ′′ = (n − 1)w′′
w

. This simplification leads to:

(n − 1)
(
uu′′ + uu′w′w−1 − (

u′)2) + uu′f ′ = λ2.
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We show λ2 is not constant by examining its asymptotics at s = 0 and s → ∞. As
s → 0+: f limits to 0 (without loss of generality), f ′ limits to 0, u limits to C, u′
limits to zero, and u′′ limits to 1. This implies lims→0+ λ2(s) = 2C(n − 1). On the
other hand, by the above asymptotics on w and f , one can show that u′′

u
and u′

u
limit

to 4c

(n−2)2 and 2
√

c
n−2 at infinity, respectively. It follows that lims→∞ λ2(s)u(s)−2 = −2c

n−2 ,
so that λ2(s) → −∞ as s → ∞. In particular, λ2 is not constant.

Example 6.7 (Flat Gaussian Soliton) There is one more example of a complete, ro-
tationally symmetric, shrinking gradient Ricci soliton: the flat Gaussian. In this case
the metric is flat Rn written in polar coordinates as

g1 = ds2 + s2gSn−1

with f = λ1
2 s2 + b, λ1 �= 0. Without loss of generality we assume b = 0. Then we

have

h1 = dt2 + (
e

−λ1s2

2(n−2) s
)2

gSn−1 ,

where dt
ds

= e
−λ1s2

2(n−2) , so du
ds

= se
−λ1s2

n−2 and thus

u(s) = C − (n − 2)

2λ1
e

−λ1s2

n−2 .

Considering g2 = u−2g1, note that when λ1 > 0, u(s) is bounded which implies
that we can choose C large enough so that u does not vanish and that g2 is complete.
When λ1 < 0 and C > 0 we also obtain a global conformal change; however, g2 will
be incomplete.

Finally, we determine whether g2 is a Ricci soliton. We know that Ricg2 +
Hessg2f = λ2g2 for a function λ2. Arguing as in the Bryant soliton example, by
equation (6.2) we obtain

(n − 1)
(
uu′′ + u′us−1 − (

u′)2) + λ1 + λ1su
′u = λ2.

Then one can explicitly show that λ2 is not constant in this case as well.

Finally, we prove the following corollary, which completes the proof of Theo-
rem 1.9.

Corollary 6.8 Let φ be a non-homothetic conformal diffeomorphism between Ricci
solitons (M1, g1, f1) and (M2, g2, f2) such that φ∗df2 = df1. If (M1, g1) is complete
and either shrinking or steady, then f1 and f2 are constant, and either (M1, g1)

and (M2, g2) are both isometric to round spheres, or φ is an inverse stereographic
projection with (M1, g1) flat Euclidean space and (M2, g2) a round spherical metric
with a point removed.

Proof By Theorem 1.9, we have that (M1, g1, f1) is a product of R with an Einstein
manifold, the Bryant soliton, a flat Gaussian soliton, a flat Euclidean space, or a



J.L. Jauregui, W. Wylie

round sphere. However, the previous examples show the conformal transformations
associated with the first three cases do not produce a soliton metric. In the last two
cases, f is constant so we are in the Einstein case. From Example 4.11 we can see the
only time we have a global non-homothetic conformal diffeomorphism from a round
spherical metric g1 to another Einstein metric g2 is when g2 is also a round spherical
metric. A similar analysis shows that the only time we have a global non-homothetic
conformal diffeomorphism from flat Euclidean space g1 to another Einstein metric is
the case of inverse stereographic projection where g2 is a round spherical metric with
a point removed. �

Acknowledgements The authors would like to thank the referees for their thorough reading of the paper
and helpful comments.

Appendix A: Conformal Fields on Warped Products over a One-Dimensional
Base

Here we collect some calculations for conformal fields of a Riemannian metric h of
the form

h = dt2 + u(t)2gN

on M = I × N , where I is an open interval. Let V be a vector field on M . We write

V = v0(t, x)
∂

∂t
+ Vt ,

where v0 is a function on M and Vt is the projection of V onto the factor {t}×N . We
have the following necessary and sufficient conditions for V to be a conformal field
for h.

Proposition A.1 V is a conformal field for h,

LV h = 2σh,

if and only if

(1) Vt is a conformal field for gN for each t : LVt gN = 2ωtgN ;

(2) ∂
∂t

(v0u
−1) = ωtu

−1;

(3) ∂Vt

∂t
= −u−2∇Nv0,

where ∇Nv0 is the gradient of v0(t, ·) on {t} × N . Moreover,

σ = v0u
−1 ∂u

∂t
+ ωt = ∂v0

∂t
.

Proof We compute the Lie derivative of h. Let (x1, . . . , xn−1) be normal coordinates
at some p ∈ N , and let Vt = vi(t, x)∂i , with the Einstein summation convention in
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effect for i = 1 to n − 1. Here, ∂i = ∂
∂xi and we let ∂t = ∂

∂t
. To begin, we record the

following Lie brackets.

[V,∂t ] = −∂v0

∂t
∂t − ∂vi

∂t
∂i

[V,∂j ] = − ∂v0

∂xj
∂t − ∂vi

∂xj
∂i .

Now, at the point (t,p),

(LV h)(∂t , ∂t ) = DV h(∂t , ∂t ) − 2h
([V,∂t ], ∂t

)

= 2
∂v0

∂t

,

(LV h)(∂t , ∂j ) = DV h(∂t , ∂j ) − h
([V,∂t ], ∂j

) − h
(
∂t , [V,∂j ]

)

= u2 ∂vj

∂t
+ ∂v0

∂xj
,

(LV h)(∂j , ∂k) = DV h(∂j , ∂k) − h
([V,∂j ], ∂k

) − h
(
∂j , [V,∂k]

)

= 2v0uu′δjk + u2
(

∂vk

∂xj
+ ∂vj

∂xk

)

= 2v0uu′gN(∂j , ∂k) + u2(LVt gN)(∂j , ∂k).

In particular, for arbitrary vector fields X,Y tangent to {t} × N ,

(LV h)(∂t ,X) = u2gN

(
X,

∂Vt

∂t

)
+ DXv0,

(LV h)(X,Y ) = 2v0uu′gN(X,Y ) + u2(LVt gN)(X,Y ).

Then LV h equals 2σh if and only if

σ = ∂v0

∂t
,

u2 ∂Vt

∂t
= −∇Nv0,

LVt gN = 2ωtgN,

where ωt := σ − v0u
−1u′. The first equation is equivalent to

∂

∂t

(
v0u

−1) = ωu−1. �

Two consequences of this result are the following.

Corollary A.2 If V is a conformal field for h as above, then v0 = v0(t) if and only if
Vt is a fixed homothetic vector field for gN .
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Proof Equation (3) of the previous proposition shows that v0 = v0(t) if and only if
Vt is independent of t . In this case, (2) implies that ω is constant. �

In fact, we can solve for v0 and σ explicitly.

Corollary A.3 With notation as above,

v0 = u(t)

(
A(x) +

∫
ωt(x)

u(t)
dt

)

σ = u′(t)
(

A(x) +
∫

ωt(x)

u(t)
dt

)
+ ωt(x),

where A(x) is a function on N .

Proof Integrating equation (2) of the proposition with respect to t gives the formula
for v0. The formula for σ follows from σ = ∂v0

∂t
. �
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