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Warped product Einstein metrics
on homogeneous spaces

and homogeneous Ricci solitons
By Chenxu He at Norman, Peter Petersen at Los Angeles and William Wylie at Syracuse

Abstract. In this paper we consider connections between Ricci solitons and Einstein
metrics on homogeneous spaces. We show that a semi-algebraic Ricci soliton admits an Ein-
stein one-dimensional extension if the soliton derivation can be chosen to be normal. Using our
previous work on warped product Einstein metrics, we show that every normal semi-algebraic
Ricci soliton also admits a k-dimensional Einstein extension for any k � 2. We also prove
converse theorems for these constructions and some geometric and topological structure results
for homogeneous warped product Einstein metrics. In the appendix we give an alternative ap-
proach to semi-algebraic Ricci solitons which naturally leads to a definition of semi-algebraic
Ricci solitons in the non-homogeneous setting.

1. Introduction

A Riemannian manifold .M; g/ is called an Einstein manifold if its Ricci curvature sat-
isfies Ric D �g for some constant � 2 R. In this paper we are interested in non-compact
homogeneous Einstein manifolds. There are also many existence and non-existence results if
the manifold is compact, see for example [23]. From the classical Bonnet–Myers Theorem, an
Einstein manifold is compact if � > 0. If � D 0, a homogeneous Ricci flat space is necessary
flat, see [2]. So for non-compact homogeneous Einstein manifolds one can assume that � < 0.

All known examples of non-compact, non-flat homogeneous Einstein manifolds are iso-
metric to Einstein solvmanifolds. A solvmanifold .G; g/ is a simply-connected solvable Lie
group G endowed with a left invariant metric g. It has been conjectured by D. V. Alekseevskii
that any non-compact, non-flat, homogeneous Einstein spaceM has maximal compact isotropy
subgroups, see [1, 3]. If G is a linear group that acts transitively on M , this implies that M is
a solvmanifold or is diffeomorphic to a Euclidean space, see [9, Section 2]. Einstein solvman-
ifolds have been intensively investigated in [9, 15].

The second author was supported in part by NSF-DMS grant 1006677. The third author was supported in
part by NSF-DMS grant 0905527.
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2 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

A natural generalization of an Einstein manifold is a Ricci soliton, i.e., a metric that
satisfies the equation

Ric D �g C
1

2
LXg;

where X 2 X.M/ is a smooth vector field and LX is the Lie derivative. A trivial example
of a Ricci soliton is an Einstein metric with X a Killing vector field. A Ricci soliton is called
non-trivial ifX is not a Killing vector field. Under the Ricci flow, a Ricci soliton metric evolves
via diffeomorphism and scaling. Besides the important role in the singularity analysis of Ricci
flows, the geometry of Ricci solitons shares some common features with Einstein manifolds.

A Ricci soliton is called a gradient Ricci soliton if X is a gradient vector field. From the
work of Ivey [10], Naber [17], Perelman [18] and Petersen–Wylie [20–22], a non-trivial, non-
flat homogeneous Ricci soliton must be non-compact, expanding (� < 0) and of non-gradient
type. In fact, all known examples are isometric to a left-invariant metric g on a simply con-
nected solvable Lie group G, which when identified with an inner product on the Lie algebra
g of G satisfies

(1.1) Ric D �I CD

for some � 2 R and D 2 Der.g/ a symmetric derivation. On the other hand, any left invariant
metric which satisfies the above equation is automatically a Ricci soliton and the diffeomor-
phisms which are generated by D are automorphisms on the Lie algebra g. A generalized
version of the Alekseevskii conjecture claims that these exhaust all examples of non-trivial,
non-flat homogeneous Ricci solitons.

Recall that for a Lie groupH , a Riemannian manifold .N; g/ is calledH -homogeneous if
H acts transitively and by isometries on N . The concept of a semi-algebraic Ricci soliton was
introduced recently by M. Jablonski in [11] via Ricci flows on homogeneous spaces. Roughly
speaking, a Ricci soliton on a H -homogeneous is semi-algebraic with respect to H if the
Ricci flow with initial metric g flows by scaling and automorphisms which preserve the H -
homogeneous structure (see Definition 2.1 below). Jablonski proves several interesting results,
including that every Ricci soliton on a homogeneous space is semi-algebraic with respect to
its isometry group. On the other hand, when H is a proper subgroup of the isometry group, a
H -homogeneous Ricci soliton may not be semi-algebraic with respect toH (see [11, Example
1.3]).

In this paper we introduce the notion of a normal semi-algebraic Ricci soliton. Roughly
speaking, a semi-algebraic soliton on aG-homogeneous space is normal if a certain derivation,
D, on the Lie algebra commutes with its adjoint when projected to the tangent space, see
Section 2.1 for details. It is an easy consequence of the definition that all algebraic Ricci
solitons are normal. Our first result shows that being a normal semi-algebraic Ricci soliton is
the condition which allows us to construct a one-dimensional extension which is Einstein, see
Definition 2.5 for one-dimensional extension of a homogeneous space.

Theorem 1.1. A non-flat, non-trivial normal semi-algebraic Ricci soliton on a homo-
geneous space admits an Einstein one-dimensional extension.

Remark 1.2. This theorem extends part of the work of J. Lauret on nilpotent groups
which states that an algebraic Ricci soliton on a nilpotent group admits an Einstein one-
dimensional extension [14]. His argument relies on the special curvature properties of nilpotent
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Lie groups. It is unknown whether there are semi-algebraic Ricci solitons which are not alge-
braic.

Remark 1.3. Our construction shows that if there is a normal semi-algebraic or alge-
braic Ricci soliton that is not isometric to a simply-connected solvable Lie group, then there is
also a homogeneous Einstein manifold which is not isometric to an Einstein solvmanifold, see
Theorems 3.2, 6.2 and their remarks. This would give a counter-example to the Alekseevskii
conjecture. This result was also obtained in the case of algebraic Ricci solitons in a recent
preprint of R. Lafuente and J. Lauret in [13] using different methods.

Our next result gives another connection between semi-algebraic Ricci solitons and ho-
mogeneous Einstein manifolds. This new connection is obtained by studying a special con-
struction of Einstein metrics as warped product metrics. For constants � 2 R and m ¤ 0 the
space of all solutions to the .�; nCm/-Einstein equation on a Riemannian manifold .M n; g/

is the following function space:

W.M; g/ D W�;nCm.M; g/ D
°
w 2 C1.M/ W Hessw D

w

m
.Ric��g/

±
:

A non-zero constant function is in W.M; g/ if and only if .M; g/ is a �-Einstein manifold.
When m � 2 is a positive integer, then W.M; g/ contains a positive function w if and only if
the productE DM�Fm with metric gE D gCw2gF is a �-Einstein manifold where the fiber
.F; gF / is an appropriate space form. We call such a manifold .M; g/ a .�; nC m/-Einstein
manifold. In this case, we also require w D 0 on @M if it is non-empty. A .�; nCm/-Einstein
manifold is called non-trivial if the warping function is not a constant. Note that a .�; nCm/-
Einstein manifold is also referred as m-quasi Einstein manifold, see for example [4].

Theorem 1.4. Let m > 0 be an integer and � < 0 be a constant. A non-flat, non-trivial
normal semi-algebraic Ricci soliton admits a non-trivial homogeneous .�; n C m/-Einstein
one-dimensional extension.

Remark 1.5. Note that in the theorem above the constant � in the one-dimensional
extension is the same � in equation (1.1) of the Ricci soliton.

Theorems 1.1 and 1.4 imply the following corollary.

Corollary 1.6. Let m � 0 be an integer. A non-flat, non-trivial normal semi-algebraic
Ricci soliton on a homogeneous spaceN n�1 admits a homogeneous Einstein extensionEnCm.

Remark 1.7. Note that when m � 2, N n�1 has two different homogeneous Einstein
extensions. Let M n be the non-trivial .�; nCm/-Einstein manifold in Theorem 1.4 and then
EnCm D M n �w F

m with an appropriate F and a non-constant warping function w. The
other extension is obtained by using Theorem 1.1. Let OM n be the one-dimensional Einstein
extension in Theorem 1.1 and let OFm be another homogeneous �-Einstein manifold. Then the
second extension is given by the Riemannian product OM � OF .
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4 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Remark 1.8. Another interesting consequence of our construction is that every nor-
mal semi-algebraic Ricci soliton can be isometrically embedded into a homogeneous Einstein
manifold with an arbitrary codimension.

Remark 1.9. One of the main tools in the proof of Theorems 1.1 and 1.4 is a simple
construction, called a one-dimensional extension of a homogeneous space, see Definition 2.5.
It is a natural generalization of the semi-direct product of a Lie group with the real line R, i.e.,
an abelian extension with the real line. The Ricci curvature of the extension enjoys very nice
properties when the original homogeneous space has a normal semi-algebraic Ricci soliton
structure, see Lemma 2.9.

We also prove that a converse of both Theorems 1.1 and 1.4 hold, i.e., if the one-
dimensional extension of a semi-algebraic Ricci soliton byD is Einstein or .�; nCm/-Einstein,
then D is normal; see Theorems 3.2 and 5.2. In the case of .�; n C m/-Einstein metrics we
also prove the following characterization of the spaces in Theorem 1.4.

Theorem 1.10. Let .M; g/ be a non-trivial homogeneous .�; n C m/-Einstein metric.
Then M is a one-dimensional extension of a normal semi-algebraic Ricci soliton if and only if
rrw Ric D 0.

Combining this result with Theorem 1.1 gives us the following corollary.

Corollary 1.11. A homogeneous warped product Einstein metric .E; gE / of the form
gE D gM Cw

2gF with rrw Ric D 0 onM is diffeomorphic to a product of Einstein metrics.

Remark 1.12. We do not know of examples of homogeneous .�; nCm/-Einstein met-
rics which do not satisfy rrw Ric D 0. In Theorem 5.1 we also give a structure theorem for
the case where rrw Ric ¤ 0. In this case, M must still be a one-dimensional extension of a
space N , but N satisfies a slightly different equation than the semi-algebraic soliton equation.
We do not know if there are examples that satisfy this equation but are not Ricci solitons.

The paper is organized as follows. In Section 2 we review the definition of semi-algebraic
Ricci solitons, define one-dimensional extensions of homogeneous spaces, and recall some
useful facts of .�; nCm/-Einstein manifolds. In Section 3 we study two special cases of one-
dimensional extensions: when the extension is Einstein and when the extension is .�; nCm/-
Einstein. The study of the first case gives a proof of Theorem 1.1. In Section 4 we apply
the results on .�; n C m/-Einstein metrics with symmetries in our earlier paper [7] to study
homogeneous .�; n C m/-Einstein manifolds. In Section 5 we characterize the structure of
homogeneous .�; nCm/-Einstein manifolds and prove Theorems 1.4 and 1.10. In Section 6 we
specialize our study of general homogeneous spaces to Lie groups with left invariant metrics.
In the appendix, we also give an alternative approach to semi-algebraic Ricci solitons in terms
of algebras of vector fields and propose a definition of semi-algebraic Ricci solitons on non-
homogeneous spaces.

Acknowledgement. Part of the work was done when the first author was at Lehigh
University and he is very grateful to the institute for their hospitality.

Brought to you by | Syracuse University Library
Authenticated | 128.230.13.143

Download Date | 2/20/14 7:06 PM



He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics 5

2. Preliminaries

This section is separated into three subsections. In the first subsection we recall the
definition of semi-algebraic Ricci solitons. In the second subsection we consider the useful
construction of a one-dimensional extension of a homogeneous space and study how its curva-
ture relates to those on the original manifold. In the third subsection we collect a few relevant
facts about .�; nCm/-Einstein manifolds from [6, 7].

2.1. Semi-algebraic Ricci solitons. We recall the definition of a homogeneous semi-
algebraic soliton given in [11]. First we fix some notation. Let H be a Lie group and let
.M D H=K; g/ be anH -homogeneous space. LetK be the isotropy subgroup at a fixed point
x 2M and h; k be the Lie algebras of H and K respectively. Let ˆt 2 Aut.H/ be a family of
automorphisms of H such that ˆt .K/ D K; ˆt gives rise to a well defined diffeomorphism
�t of H=K defined by

�t .hK/ D ˆt .h/K; h 2 H:

Definition 2.1 ([11, Definition 1.4]). .H=K; g/ is a semi-algebraic Ricci soliton with
respect to H if there exists a family of automorphisms ˆt 2 Aut.H/ such that ˆt .K/ D K

and
gt D c.t/�

�
t .g/

is a solution to the Ricci flow
@

@t
g D �2Ricg

on H=K with g0 D g.

Fix an Ad.K/-invariant decomposition h D p ˚ k and let pr W h ! p be the orthogo-
nal projection. p is then naturally identified with TxM . Jablonski also proves the following
proposition about semi-algebraic solitons.

Proposition 2.2 ([11, Proposition 2.3]). If .H=K; g/ is a semi-algebraic Ricci soliton
with respect to a Lie algebra H then there exists a derivation D 2 Der.h/ such that

Ric D �I C
1

2

�
pr ıD C .pr ıD/�

�
:

Here � denotes the adjoint with respect to the metric g on h. Moreover, we may assume that
Djk D 0.

The condition which will become important in constructing extensions is that the deriva-
tion D be a normal operator, at least when projected to p. In particular, we give the following
definition.

Definition 2.3. A semi-algebraic Ricci soliton is normal if the map pr ıD ı pr W h! h

is a normal operator.
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6 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Remark 2.4. A Ricci soliton on a H homogeneous space is called algebraic if

Ric D �I C pr ıD

for some D 2 Der.h/. Since the Ricci tensor is a symmetric operator, algebraic solitons are
always normal.

Recall that, if we consider the symmetric and anti-symmetric parts of D,

S D
1

2

�
pr ıD ı prC.pr ıD ı pr/�

�
;

A D
1

2

�
pr ıD ı pr�.pr ıD ı pr/�

�
;

the operator pr ıD ı pr will be normal if and only if S and A commute, ŒS; A� D 0. We will
find ŒS; A� to be an important term in the calculation of Ricci curvatures of extensions in the
next subsection.

2.2. One-dimensional extension of homogeneous spaces. We recall some general
facts about extensions of Lie groups and Lie algebras, i.e., semi-direct products. Let H be
a Lie group and let .N; h/ be an H -homogeneous space. By passing to its universal cover if
necessary, we may assume that H is simply-connected. We use the same notation for K, h, k,
p, pr as in the previous subsection. To construct an extension we fix a constant ˛ 2 R and a
derivation of the Lie algebra D 2 Der.h/ which preserves K and consider the new Lie algebra

g D h˚R�

on which the Lie bracket operation is given by

ad�.X/ D ˛D.X/ for all X 2 h:

Let G be the simply-connected Lie group with Lie algebra g that contains H as a subgroup.
Since ad�.X/ 2 h for any X 2 h, H is a codimension one normal subgroup of G and G is
a semi-direct product G D H Ë R. Given the Ad.K/-invariant decomposition h D p ˚ k,
we have the corresponding Ad.K/-invariant decomposition g D q ˚ k, where q D p ˚ R�,
and we identify G-invariant metrics with the restriction of Ad.K/-invariant inner products on
g to q.

This extension of Lie groups defines a natural extension of homogeneous spaces.

Definition 2.5. Let .N; h/ be an H -homogeneous space. For a constant ˛ 2 R and a
derivation D 2 Der.h/, the one-dimensional extension of .N; h/ is a G-homogeneous space
.M; g/ with M D G=K and

gjp D h;

g.�; X/ D 0 for all X 2 p;

g.�; �/ D 1;

where G D H Ë R is the semi-direct product of H and R by D and ˛.
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Remark 2.6. Note that for the commutator series we have

h1 D Œh; h� � g1 D Œg;g� � h:

It follows that h is a solvable Lie algebra if and only if g is solvable.

In the following we compute the curvatures of an extension and relate them back to
the curvatures of .N; h/, the derivation D, and the constant ˛. To do so we consider the
codimension one submanifold H=K � M D G=K which is the H orbit at x 2 M . The
vector � is a unit normal vector to H=K at x. Using left translations of H from x we obtain a
unit normal vector field to H=K which is also denoted by � . The second fundamental form of
N �M is then given by

IIx.X; Y / D g.T .X/; Y / D g.rMX �; Y /;

where T W TxN ! TxN is the shape operator. Recall that S and A denote symmetric and
anti-symmetric parts of D, restricted to p ' TxM ,

S D
1

2
.pr ıD C pr ıD�/;(2.1)

A D
1

2
.pr ıD � pr ıD�/:

The next proposition relates the tensors S and A to the shape operator T .

Proposition 2.7. Let .M; g/ be the one-dimensional extension of .N; h/ with

ad�.X/ D ˛D.X/ for all X 2 h:

Then
T D �˛S and r�T D ˛

2ŒS; A�:

Proof. We start with the calculation on the Lie group G, endowed with a metric so that
the quotient map G ! G=K is a Riemannian submersion. Then we have

˛D.X/ D ad�.X/ D �r
G
X � Cr

G
� X:

Since rG� � is the shape operator of H � G which is symmetric and rG
�
� is skew-symmetric,

we have

r
G
� X D

˛

2
.D �D�/.X/; rGX � D �

˛

2
.D CD�/.X/:

Now choosing X in p is equivalent to X being a basic horizontal field of the Riemannian
submersion G ! G=K, see [5, Chapter 3]. The unit vector � is also basic and horizontal.
Therefore, we have

r�X D pr.rG� X/ D ˛A; T .X/ D rX� D pr.rGX �/ D �˛S:

This also gives us

.r�T /.X/ D r�.T .X// � T .r�X/

D
�
.˛A/ ı .�˛S/C .˛S/ ı .˛A/

�
.X/ D ˛2ŒS; A�.X/

which finishes the proof.
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8 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Remark 2.8. While the tensor S is defined on a chosen tangent space, TxM , the for-
mula T D �˛S defines S geometrically over the entire manifold M and allows us to define
covariant derivatives and the divergence of the tensor S . Note that, since the unit normal vector
� is invariant under the group H , so is T and thus S .

Combining these formulas with the Gauss, Codazzi, and radial curvature equations, see
[19], we have the following formulas for the Ricci curvatures.

Lemma 2.9. Let .N; h/ be an H -homogeneous space, D a derivation of h, and let
.M; g/ the one-dimensional extension with

ad�.X/ D ˛D.X/ for all X 2 h:

Then the Ricci tensor of .M; g/ is given by

Ric.�; �/ D �˛2 tr.S2/;

Ric.X; �/ D �˛ div.S/;

Ric.X;X/ D RicN .X;X/ � .˛2 trS/h.S.X/;X/ � ˛2h.ŒS; A�.X/;X/:

Remark 2.10. When D is normal, we have ŒS; A� D 0. Thus the Ricci curvatures of
M do not depend on the skew-symmetric part A and have a very simple form in terms of S and
Ricci curvatures of N .

Proof. The radial, Gauss, and Codazzi equations tell us the curvatures on .M; g/ have
the following forms:

R.X; �/� D �.r�T /.X/ � T
2.X/;

R.X; Y;Z;W / D RN .X; Y;Z;W / � g.T .Y /;Z/g.T .X/;W /C g.T .X/;Z/g.T .Y /;W /;

R.X; Y;Z; �/ D �g
�
.rXT /.Y / � .rY T /.X/;Z

�
:

Let ¹Xiºn�1iD1 be an orthonormal basis of p, then the Ricci tensor satisfies

Ric.�; �/ D
X
i<n

R.Xi ; �; �; Xi / D �D�.trT / � tr.T 2/;

Ric.X; �/ D
X
i<n

R.Xi ; X; �; Xi /

D

X
i<n

�g
�
.rXT /.Xi / � .rXi

T /.X/;Xi
�

D �DX .trT /C divT .X/;

Ric.X;X/ D R.�;X;X; �/C
X
i<n

R.Xi ; X;X;Xi /

D �g..r�T /.X/;X/ � g.T
2.X/;X/C RicN .X;X/X

i<n

�g.T .Xi /; Xi /g.T .X/;X/C g.T .X/;Xi /g.T .Xi /; X/

D RicN .X;X/ � .trT /g.T .X/;X/ � g..r�T /.X/;X/:

Brought to you by | Syracuse University Library
Authenticated | 128.230.13.143

Download Date | 2/20/14 7:06 PM



He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics 9

Note that T is invariant under the isometries and so tr.T / is constant. Substituting in T D ˛S
and r�T D �˛2ŒS; A� from Proposition 2.7 gives us

Ric.�; �/ D �˛2 tr.S2/;

Ric.X; �/ D �˛ div.S/;

Ric.X;X/ D RicN .X;X/ � .˛2 trS/h.S.X/;X/ � ˛2h.ŒS; A�.X/;X/

which finishes the proof.

2.3. .�; n C m/-Einstein manifold with symmetries. Recall from [7] that the space
W D W�;nCm.M; g/ contains the solutions to the .�; nCm/-Einstein equation

Hessw D
w

m
.Ric��g/:

The space W is clearly a vector space. Moreover, there is an associated quadratic form

�.w/ D w�w C .m � 1/jrwj2 C �w2:

In the case when .M; g/ is a .�; nCm/-Einstein manifold with the warping function w, �.w/
is the Ricci curvature of .F; gF / and the warped product metric g C w2gF is Einstein with
Einstein constant �. In a series of papers [6–8] the geometry of .�; nCm/-Einstein manifolds
has been intensively studied for its connection to comparison geometry of m-Bakry–Émery
tensors, gradient Ricci solitons, etc. In particular, in [8] we showed that there are non-trivial
.�; 4 C m/-Einstein metrics on certain 4-dimensional solvable Lie groups with left invariant
metrics. This gave the first examples of non-trivial homogeneous .�; n C m/-Einstein mani-
folds.

By studying the space W with the quadratic form � we obtained in [7] a few uniqueness
theorems. A main result from [7] is the following structure theorem when dimW � 2.

Theorem 2.11 ([7, Theorem 2.6]). Let (M n; g) be a complete simply-connected Rie-
mannian manifold with dimW�;nCm.M; g/ D k C 1. Then

M D Bb �u F
k;

where

(1) the space B is a manifold, possibly with boundary, and u is a non-negative function in
W�;bC.kCm/.B; gB/ with u�1.0/ D @B ,

(2) the function u spans W�;bC.kCm/.B; gB/, and

(3) the fiber F k is a space form with dimW�B.u/;kCm.F; gF / D k C 1, where �B denotes
the quadratic form on W�;bC.kCm/.B; gB/.

Moreover,

(4) W�;nCm.M; g/ D ¹uv W v 2 W�B.u/;kCm.F; gF /º.

The above theorem motivated the following definition.
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10 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Definition 2.12. Let .Bb; gB/ be a Riemannian manifold possibly with boundary and
let u be a non-negative function on B with u�1.0/ D @B . Then .B; gB ; u/ is called a
.�; k C m/-base manifold if .W�;bC.kCm/.B; gB//D D span¹uº, where WD denotes the so-
lutions satisfying Dirichlet boundary conditions. It is called an irreducible base manifold if
W�;bC.kCm/.B; gB/ D span¹uº with no boundary conditions imposed.

We showed that the converse of the above theorem also holds.

Theorem 2.13 ([7, Theorem 2.10]). Given an irreducible .�; k C m/-base manifold
.B; gB ; u/ there is a complete metric of the form

M D Bb �u F
k

such that dimW�;.bCk/Cm.M; gM / D k C 1.

Remark 2.14. If @B D ;, �B.u/ > 0, and k D 1, then there are two such metrics
corresponding to the choice F D R or F D S1. Otherwise, the warped product over B
with dimW�;.bCk/Cm.M; gM / D k C 1 is unique. In this case, we call M the k-dimensional
elementary warped product extension of .B; gB ; u/.

In [7, Section 5] we established the following relationship between isometries on M and
B . Note that any isometry � of M has a natural action on W.M; g/ sending w to w ı ��1.

Theorem 2.15 ([7, Theorem 5.7]). Let M be a simply connected .�; n C m/-Einstein
manifold with dimW�;nCm.M/ D kC 1 > 1. Then the isometry group of M consists of maps
h W M !M of the form h D h1 � h2 with h1 W B! B , h2 W F ! F , where h1 2 Iso.B; gB/
and

(1) if �.u/ ¤ 0 then h2 2 Iso.F; gF /;

(2) if �.u/ D 0 then h2 is a C -homothety of Rk where C D Ch1
is the constant so that

u ı h�11 D Ch1
u. Namely,

h2.v/ D b C CA.v/ with b 2 Rk; A 2 O.Rk/:

Remark 2.16. Note that the isometry group Iso.M; g/ contains the subgroup

Iso.B; gB/u � Iso.Rk/;

where Iso.B; gB/u D ¹� 2 Iso.B; gB/ W u D u ı ��1º. This subgroup has codimension one
unless u is a constant function.

3. One-dimensional extension of homogeneous space

In this section using Lemma 2.9 we obtain the conditions under which a homogeneous
space admits an Einstein one-dimensional extension, see Theorem 3.1, and then prove Theo-
rem 1.1, see Theorem 3.2. In the second part, we show that it also admits a one-dimensional
extension which is .�; nCm/-Einstein with � < 0, see Theorem 3.3.
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He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics 11

3.1. Einstein one-dimensional extension.

Theorem 3.1. Suppose .N; h/ is an H -homogeneous space and D is a derivation of h

such that the conditions

(1) RicN D �I C S C 1
tr.S/ ŒS; A�,

(2) div.S/ D 0,

(3) tr.S2/ D �� tr.S/

hold for some constant � < 0. Then the one-dimensional extension of .N; h/ with D and
˛2 D 1

tr.S/ is �-Einstein.

Proof. From Lemma 2.9 we see that div.S/ D 0 is equivalent to Ric.X; �/ D 0. The
condition tr.S2/ D �� tr.S/ then tells us that

Ric.�; �/ D �˛2 tr.S/:

So if we choose ˛ so that ˛2 D 1
tr.S/ , then Ric.�; �/ D �. Then we have

Ric.X;X/ D RicN .X;X/ � h.S.X/;X/ �
1

tr.S/
h.ŒS; A�.X/;X/ D �g.X;X/

from condition (1). This shows that the one-dimensional extension .M; g/ of .N; h/ is Einstein
with Einstein constant �.

In the case when .N; h/ is a semi-algebraic Ricci soliton the theorem above gives us
Theorem 1.1 in the introduction.

Theorem 3.2. A non-flat, non-trivial semi-algebraic Ricci soliton on a homogeneous
space admits an Einstein one-dimensional extension with

ad�.X/ D ˛D.X/ for all X 2 h

if and only if D is normal.

Proof. Let .N n�1; h/ be a semi-algebraic Ricci soliton

Ric D �I C S

for some constant �. By exponentiating, we can identify S with the Lie derivative 1
2
LY h for

some vector field Y 2 X.N / and get a Ricci soliton structure on N . This gives us

div.LY h/ D 2 div.Ric/ D d scal D 0

and so div.S/ D 0. Recall the formula for the Laplacian of the scalar curvature of a Ricci
soliton

�.scal/ �DY scal D � scal�jRicj2:

Since the scalar curvature is constant, we have

jRicj2 D � scal

which is equivalent to tr.S2/ D �� tr.S/.
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12 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

If D is normal, then ŒS; A� D 0 and then from the previous Theorem 3.1 there is a
one-dimensional extension of .N; h/ which is Einstein.

On the other hand, if we have a non-trivial semi-algebraic Ricci soliton and a one-
dimensional extension which is �-Einstein, then the equation tr.S2/ D �� tr.S/ and Ricci
curvature RicM .�; �/ D ˛2 tr.S2/ D � imply that ˛2 tr.S/ D 1. Plugging this into the equa-
tion for RicM .X;X/ in Lemma 2.9 then implies that ŒS; A� D 0, i.e., D is normal.

To finish the proof we show that if the extension has Einstein constant c ¤ � then N is
flat. Now we must choose ˛ so that ˛2 D c

� tr.S/ , then the third equation in Lemma 2.9 tells us
that on N we have

˛2ŒS; A�C
� c
�
� 1

�
S C .c � �/I D 0:

Tracing this equation yields� c
�
� 1

�
tr.S/C .c � �/.n � 1/ D 0:

Since c ¤ �, this is equivalent to

tr.S/C �.n � 1/ D 0:

But this implies we have scal D 0 which implies jRicj2 D 0 on N . So N is a flat space as a
homogeneous Ricci flat space is flat, see for example [3, Theorem 7.61].

3.2. .�; nCm/-Einstein one-dimensional extension. We consider the same set-up as
in the previous subsection. Namely .N n�1; h/ is an H -homogeneous space and .M n; g/ is a
one-dimensional extension of N by a derivation D 2 Der.h/ and a constant ˛. We let r be the
signed distance function on M to the hypersurface N . For reasons made clear below, we let

w.r/ D eLr

for some constant L which is also determined later.

Theorem 3.3. Let m > 0 be an integer. Suppose .N n�1; h/ is an H -homogeneous
space with a derivation D 2 Der.h/ such that the conditions

(1) RicN D �I C S C 1
tr.S/��m ŒS; A�,

(2) div.S/ D 0,

(3) tr.S2/ D �� tr.S/

hold for some constant � < 0. Then the one-dimensional extension of .N; h/ with D and
˛2 D 1

tr.S/��m is a .�; nCm/-Einstein manifold with warping function

w.r/ D eLr with L D �˛:

Proof. Setting w D eLr we have

Hessw D L2wdr ˝ dr C Lwg.T .�/; �/;

where dr ˝ dr.X; Y / D X.r/Y.r/ and T .X/ D rXrr for any X; Y 2 TxM . Note that
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He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics 13

� D rr . Applying the assumption on N along with Lemma 2.9 we obtain the equations�
Ric�

m

w
Hessw

�
.�; �/ D �˛2 tr.S/ �mL2;�

Ric�
m

w
Hessw

�
.X;X/ D �h.X;X/C

�
1 � ˛2.trS/CmL˛

�
h.S.X/;X/

C

� 1

tr.S/ � �m
� ˛2

�
h.ŒS; A�.X/;X/:

We wish to show there is a solution of ˛ and L such that Ric�m
w

Hessw D �g. From the first
equation above we can see that a necessary condition is that

˛2 tr.S/ D 1C
m

�
L2:

Plugging this condition into the trace of the second equation above we obtain

mL
�
˛ �

L

�

�
D 0

which indicates we should either choose L D 0 or L D �˛. The case L D 0 corresponds to
the Einstein extension discussed in Theorem 3.1. In the other case plugging L D �˛ back into
the first equation gives

˛2 D
1

tr.S/ � �m
:

This choice of ˛ also makes the ŒS; A� term vanish. Note that since tr.S/ > 0 and � < 0 the
quantity on the right is positive, so there is a solution to this equation.

We note that, in the special case where N is a normal semi-algebraic Ricci soliton, this
gives us the following.

Corollary 3.4. Let .N; h/ be a non-flat H -homogeneous normal semi-algebraic Ricci
soliton. For every m > 0 there is a one-dimensional extension (M;gm) of (N; h), such that
(M;gm) is a .�; nCm/-Einstein manifold.

Proof. Let .N n�1; h/ be a semi-algebraic Ricci soliton Ric D �ICS for some constant
� < 0. As in the proof of Theorem 3.2, we have

divS D 0; tr.S2/ D �� tr.S/ and jRicj2 D � scal :

If D is normal, then ŒS; A� D 0 and from Theorem 3.3 there is a one-dimensional extension of
.N; h/ which is .�; nCm/-Einstein.

Remark 3.5. The examples in Theorems 3.1 and 3.3 illustrate that there can be different
base metrics on a given topological manifold which produce different homogeneous warped
product Einstein metrics. More precisely, let .N n�1; h/ be a semi-algebraic Ricci soliton with
a normal derivation D and M n D N �R. Then on the product manifold

EnCm DM �Rm

there are two homogeneous, warped product Einstein metrics. One is the product metric
g0 C gHm where g0 is the Einstein metric on M constructed in Theorem 3.1 and gHm is
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14 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

the hyperbolic space with Ricci curvature �. The other is the metric gm C eLrgRm where gm
is the metric constructed in Theorem 3.3, and gRm is the Euclidean metric. We will verify that
the metric gm C eLrgRm is homogeneous in Theorem 4.7.

Remark 3.6. The family of metrics gm only differs from the metric g0 by the choice of
the structure constant given by ˛. As m ! 1, both ˛ and L approach 0 and thus the metrics
gm on M are converging to the product metric g D h C dt2 on N � R. Moreover, for any
X 2 TN , we have

m

w
Hessw.X;X/ D �mL˛h.S.X/;X/

D ��m˛2h.S.X/;X/ D �
�m

tr.S/ � �m
h.S.X/;X/:

So the symmetric 2-tensor m
w

Hessw is converging to S D 1
2
LY h onN . On the other hand the

quantity m
w

Hessw.�; �/ is blowing up as m!1.
Also note that the corresponding measures

wmd Volgm

do not converge as d Volgm
! d Volg but wm D eLmr and

jLmj D
��m

.tr.S/ � �m/1=2
!1:

4. Homogeneous .�; nCm/-Einstein manifolds

In the previous section we discussed how homogeneous .�; nCm/-Einstein metrics can
be constructed via one-dimensional extensions. A natural question is whether every non-trivial
.�; nC m/-Einstein metric is a one-dimensional extension of some space. We will show this
is true in the next section. In this section we prepare for the proof of this result by applying
Theorems 2.11 and 2.13 along with the results from [7, Section 5] to homogeneous manifolds.
We show that the base manifold of a homogeneous .�; n C m/-Einstein manifold is either
�-Einstein or has a special form; see Lemma 4.1. We also show that from a homogeneous
.�; nCm/-Einstein manifoldM , one can find a homogeneous �-Einstein manifold as the total
space of a warped product over M , see Theorem 4.7.

First we consider base manifolds. Let B be a base manifold with @B D ; and let G be a
transitive group of isometries acting on B . Fix a point x 2 B and let Gx be the isotropy group
at x, i.e.,

Gx D ¹� 2 G W �.x/ D xº:

Let H be the subgroup which fixes u 2 W�;bC.kCm/.B; gB/,

H D ¹� 2 G W u ı ��1 D uº D G \ Iso.B; gB/u:

Note that since H is the kernel of the group homomorphism from G to R, see [7, Defini-
tion 5.3],H is a normal subgroup. Also note that from [7, Proposition 5.4]H contains Gx and
so we have

H=Gx � G=Gx :
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He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics 15

Lemma 4.1. Let .B; gB/ be a base manifold which is homogeneous and has @B D ;.
Then either

(1) .B; gB/ is �-Einstein, or

(2) �.u/ D 0, B is non-compact, the action of H on B is cohomogeneity one with

r W B 7! B=H D R;

where H acts transitively on the level sets of u, r is a smooth distance function and u is
of the form

u D AeLr

for some constants A and L.

Remark 4.2. In other words we either have in case (1) that H=Gx D B and u is
constant, or in case (2) we have

G=Gx D R �H=Gx; gB D dr
2
C gr ;

where gr is a family of H -homogeneous metrics on H=Gx .

Proof. For � 2 H , we have u ı ��1 D u. So if H acts transitively on M , then u is
constant and B is �-Einstein.

Otherwise, suppose that u is not constant. Then Iso.B; gB/u must be a codimension
one subgroup of Iso.B; gB/ and thus H � G also has codimension one. So H acts on B by
cohomogeneity one. In this case, from [7, Proposition 5.4] we know that B is non-compact
and �.u/ D 0. Let r be the quotient map

r W B 7! B=H:

Since u is preserved by H , u can be written as a function of r , u D u.r/. The fact that
D�p.ru/ D Cruj�.p/ for any � 2 G shows that if u has a critical point, then u is constant.
This shows that B=H must be all of R.

Let 
 be a unit speed integral curve ofrr with 
.0/ D x. Define hs to be a one-parameter
subgroup of isometries taking 
.0/ to 
.s/. The differential of hs gives a Killing vector field
X� D rrCY where Y is tangent to the level surfaces of u. From [7, Proposition 5.2] we have

Lu D DX�u D Drru

for some constant L. Integrating this implies that u D AeLr .
Finally, the fact that � < 0 follows from [7, Proposition 4.5], since u is a positive function

in W�;bC.kCm/.B/ and B has constant scalar curvature.

Remark 4.3. When k C m > 1, we can also see that the constant L is determined by
the scalar curvature of B . To see this we compute

�B.u/ D .mC k � 1/jruj
2
C

u2

mC k

�
scalB �.n �m � k/�

�
D

�
.mC k � 1/L2 C

scalB �.n �m � k/�
mC k

�
e2Lr :
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16 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Since �B.u/ D 0, we obtain

(4.1) L2 D �
scalB �.n �m � k/�
.mC k/.mC k � 1/

:

The only case where L is not determined by the above formula is when k D 0 and m D 1, in
which case �B is always zero.

Remark 4.4. A different proof of this lemma can be established using the results in [8]
more heavily. In [8] we also produced examples showing case (2) is possible. We generalize
that construction in the next section.

Next we consider the warped product M D B �u F , where M is homogeneous and
dimW�;nCm.M/ D k C 1 > 1. Then Theorem 2.15 gives us the following proposition.

Proposition 4.5. Suppose thatM is a simply connected Riemannian manifold satisfying
dimW�;nCm.M/ D k C 1 > 1. Then M is homogeneous if and only if its base manifold B
has no boundary and is homogeneous.

Proof. From the proof of [7, Theorem 5.7] we know that isometries of M preserve the
singular set where all functions in W.M; g/ vanish, showing that if M is homogeneous then
the singular set is empty. It follows that @B D ;. Now Theorem 2.15 shows that the isometry
group of M acts transitively on M if and only if the isometry group of B acts transitively
on B .

The quadratic form � on W.M; g/ is either positive definite, semi-positive definite with
nullity one, or non-degenerate with index one. The manifold .M; g/ is said to be elliptic,
parabolic or hyperbolic respectively, in each of the three cases, see [7, Section 2]. As a simple
consequence of the previous lemma and proposition, we note the following corollary.

Corollary 4.6. Let M be a simply connected homogeneous Riemannian manifold with
W�;nCm.M/ ¤ ¹0º. If either � � 0, or M is elliptic or hyperbolic, then M is isometric to the
Riemannian product B � F .

As another application, we prove that if the base of a warped product Einstein metric is
homogeneous, then there is a warped product metric with the same base which is homogeneous
and Einstein.

Theorem 4.7. Let m > 0 be an integer and let M be a simply connected homogeneous
manifold with W�;nCm.M; g/ ¤ ¹0º. If there exists a positive function w 2 W�;nCm.M; g/
and Fm is the simply connected space form with Ricci curvature �.w/, then the warped prod-
uct metric

E DM �w F

is both �-Einstein and homogeneous.
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Proof. The proof breaks into various cases.
We first assume that M is a base manifold. By Lemma 4.1 there are two cases. First, if

M is �-Einstein then clearly taking w D c a constant and F a space form with Ricci curvature
�
c2 will make E a homogeneous �-Einstein metric. On the other hand, if M is a base manifold
and is not �-Einstein, then we know that w D AeLr and �.w/ D 0. In particular, F D Rm.
We also have that, if �1 2 Iso.M; gM / then w ı �1 D Cw for some constant C D C�1

. By
Theorem 2.15, or [7, Lemma 5.6], the product map �1 � �2 is an isometry of .E; gE / where
�2 is a C -homothety of Rm. This gives us a transitive group of isometries acting on E.

Next we assume thatM is not a base manifold. IfM is a space of constant curvature then
the theorem is true by the special form of the warping functions, see [7, Example 2.1]. Note that
the sphere does not have a positive function in W�;nCm.M; g/. Otherwise, from Lemma 4.1
again we also have two different cases. In the first case, we have M D B � QF where B is
�-Einstein and QF is a space form. We know that if � > 0, there are no positive functions in
W�;nCm.M/. When � � 0, we have that w D Av where v a positive function in W�;kCm. QF /.
Take another space form F such that QF �v F is a homogeneous �-Einstein manifold. Then E
is a product of �-Einstein manifolds B and QF �v F which are both homogeneous. Finally, in
the second case we have

gM D gB C e
LrgRk ;

where B is a base manifold. Since w > 0 onM , this tells us that w D AeLr for some constant
A. Then we can write

gE D gB C e
Lr.gRk C AgRm/ D gB C e

LrgRkCm :

Since B is a base manifold, we can now apply the base manifold case that we already discussed
to this metric to show that .E; gE / is homogeneous. This finishes the proof.

Remark 4.8. Note that in the last case of the previous Theorem 4.7, when

gM D gB C e
LrgRk and w.r/ D AeLr ;

we still have the property that w ı ��1 D C�w for any � 2 Iso.M; g/, even thoughM is not a
base manifold. Writing M D G=Gx this allows us to conclude, as we did at the beginning of
this section in the base manifold case, that

G=Gx D R �H=Gx

with
gM D dr

2
C gr and w D AeLr ;

where gr is a family of H -homogeneous metrics on H=Gx .

5. Non-trivial homogeneous .�; nCm/-Einstein manifolds
are one-dimensional extensions

In this section we characterize homogeneous .�; nC m/-Einstein manifolds using one-
dimensional extensions, see Theorem 5.1. From this structure theorem we prove Theorem 1.4,
see Theorem 5.2, and Corollary 1.6.
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18 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Theorem 5.1. Let .M n; g/ be a homogeneous .�; nC m/-Einstein space which is not
Einstein. Then .M; g/ is the one-dimensional extension of a homogeneous space .N n�1; h/

with a derivation D and ˛2 D 1
tr.S/��m satisfying the following conditions.

(1) RicN D �I C S C 1
tr.S/��m ŒS; A�,

(2) div.S/ D 0,

(3) tr.S2/ D �� tr.S/,

where � < 0. Moreover the warping function w 2 C1.M/ is given by w.r/ D eLr where
L D �˛ and r is the signed distance function to N .

Proof. Let G be a connected Lie group that acts transitively on M by isometries. Fix a
point x 2M and let K D Gx be the isotropy subgroup at x. The Lie algebras of G and K are
denoted by g and k respectively. Let q be the orthogonal complement of k in g. The tangent
space TxM is identified with q. In the following we separate our argument into two different
cases.

Case I. We assume that dimW.M; g/ D 1, i.e., .M; g/ is a base manifold. From
Lemma 4.1 we may assume that w.r/ D eLr for some constant L. From the proof of
Lemma 4.1 there is a codimension one normal subgroupH � G containingK that acts transi-
tively on the hypersurface N n�1 D G:x. Let h be the Lie algebra of H and � 2 g corresponds
to rr at the point x. Let p � q be the orthogonal complement of �, then we have

g D R� ˚ p˚ k; h D p˚ k:

Since H � G is a normal subgroup, we have Œ�; X� 2 h for any X 2 h. It follows that Œ�; ��
defines a derivation on h and thus M is a one-dimensional extension of N . Following the
construction in Theorem 3.3 we define

D.X/ D
1

˛
ad�.X/ for all X 2 h;

where ˛ D L
�

. In the following we show that .N; h/ with the derivation D satisfies the proper-
ties stated in the theorem.

From Proposition 2.7, the shape operator of N �M at x is given by T D �˛S where S
is the symmetrization of D in equation (2.1).

Claim. We have tr.S2/ D �� tr.S/.

In fact since w D eLr for any X 2 TxN , it follows that

Hessw.X;X/ D Lwh.T .X/;X/:

From the equation RicM �m
w

Hessw D �g we have

T .X/ D
1

mL
.RicM .X/ � �X/:

It follows that

.r�T /.X/ D
1

mL
.r� RicM /.X/ D

1

mL
.rrw

Lw
RicM /.X/

D
1

mL2w
.rrw RicM /.X/:
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On the other hand, from [8, Proposition 3.7] we have

.rrw RicM /.X; Y / D
w

m
g
�
.RicM ��I /.X/; .RicM ��I/.Y /

�
C
m

w
Q.rw;X; Y;rw/;

where Q is the .0; 4/-tensor defined at the beginning in [8, Section 3] and

� D
.n � 1/� � scal

m � 1
:

In terms of T , the above equation can be written as

mL.rrwT /.X; Y / D
w

m
g
�
mLT.X/C .� � �/X;mLT .Y /

�
C
m

w
Q.rw;X; Y;rw/:

Let ¹Xiºn�1iD1 be an orthonormal basis of TxN and then we have

mL

n�1X
iD1

.rrwT /.Xi ; Xi / D wmL
2 tr.T 2/C wL.� � �/ tr.T /:

The trace of the term that involves Q vanishes by using [8, (3.1), Proposition 3.3]. From
Proposition 2.7, since r�T D ˛2ŒS; A�, the left-hand side of the equation above is zero and we
have

mL tr.T 2/C .� � �/ tr.T / D 0:

Note that k D 0 in equation (4.1) and we have

L2 D �
scal�.n �m/�
m.m � 1/

D
� � �

m
:

It follows that tr.T 2/ D L tr.T /. Then the claim follows by T D �˛S and L D �˛.
From the formulas of Ricci curvature in Lemma 2.9 we have�

Ric�
m

w
Hessw

�
.�; �/ D �˛2 tr.S2/ �mL2;�

Ric�
m

w
Hessw

�
.�; X/ D �˛ div.S/;�

Ric�
m

w
Hessw

�
.X;X/ D RicN .X;X/ � .˛2 tr.S/ �mL˛/h.S.X/;X/

� ˛2h.ŒS; A�.X/;X/:

The second equation above implies that

div.S/ D 0:

The first equation shows that
�˛2 tr.S2/ �mL2 D �;

i.e.,
� D �˛2 tr.S/ �mL2 D �˛2 tr.S/ �m�2˛2

and so we have
˛2.tr.S/ �m�/ D 1:
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20 He, Petersen and Wylie, Homogeneous WPE and Ricci soliton metrics

Plugging it into the third equation above shows that

�I D RicN �.1Cm�˛2 �m�˛2/S � ˛2ŒS; A�

D RicN �S �
1

tr.S/ �m�
ŒS;A�:

It follows that
RicN D �I C S C

1

tr.S/ �m�
ŒS;A�

which finishes the proof in this case.
Case II. We assume that dimW.M; g/ D k C 1 with k � 1. From Lemma 4.1 and

Proposition 4.5 we know that M D Bb �u Rk and B is a homogeneous base manifold and
u 2 W�;bC.kCm/.B; gB/ is positive everywhere with �B.u/ D 0. From the proof of The-
orem 4.7 we may assume that w D u D eLr for some constant L. Let B D G1=K1 and
K1 � H1 D G1 \ Iso.B; gB/u. From Theorem 2.15 the group G D G1 Ë Rk acts transitively
on M via isometries where Rk is the C -translation in the Euclidean group, i.e., A D Id in
Theorem 2.15. The isotropy subgroup is given by K D K1 � ¹0º. Applying the argument in
the previous case to .B; gB/ yields that B is a one-dimensional extension of N b�1

1 D H1=K1
with a derivation D 2 Der.h1/ and a constant ˛ such that the following equations hold:

trh1
.S2/ D �� trh1

S;(5.1)

divN1
S D 0;(5.2)

RicN1 D �I C S C
1

trh1
S � .k Cm/�

ŒS;A�:(5.3)

LetH D H1 �Rk such that N D H=K D N1 �Rk with the product metric is the zero-
level set of w in M . It follows that h D h1 ˚Rk . We extend D to h by letting D.U / D ��U
for any U 2 Rk and the Lie bracket is extended by Œ�; U � D �LU and ŒX; U � D 0 for any
X 2 h1. It is easy to verify that D is a derivation of h. Moreover we have trS D trh1

S � k�

on h and so equation (5.3) can be written as

RicN jN1
D �I C S C

1

tr.S/ �m�
ŒS;A�:

Since S D ��I and A D 0 on Rk , the right-hand side of the above equation is zero which is
equal to RicN on the Rk factor. This shows property (1) in the theorem. Property (3) follows
from equation (5.1) and the extension of D to h. Finally property (2) follows from equation
(5.2), the product structure of N and the fact that S D ��I on the Rk factor.

We can now prove the converse statement of Corollary 3.4.

Theorem 5.2. A non-flat, non-trivial semi-algebraic Ricci soliton on a homogeneous
space admits a .�; nCm/-Einstein one-dimensional extension with

ad�.X/ D ˛D.X/ for all X 2 h

if and only if D is normal.
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Proof. Let .N n�1; h/ be a semi-algebraic Ricci soliton

Ric D �I C S

for some constant � < 0. As in the proof of Theorem 3.2, we have

divS D 0; tr.S2/ D �� tr.S/ and jRicj2 D � scal :

If D is normal, then ŒS; A� D 0 and from Theorem 3.3 there is a one-dimensional extension of
.N; h/ which is .�; nCm/-Einstein.

On the other hand, if .N; h/ admits a one-dimensional extension which is .�; n C m/-
Einstein, then from Theorem 5.1 on N we have

Ric D �I C S C
1

tr.S/ � �m
ŒS;A�:

Comparing with the semi-algebraic Ricci soliton equation yields

ŒS; A� D 0;

i.e., D is normal.
To finish the proof we show that if the extension is .c; nCm/-Einstein with c ¤ �, thenN

is flat. From Theorem 5.1 again we have tr.S2/ D �c tr.S/ and thus we have .c��/ tr.S/ D 0.
It follows that tr.S/ D 0 and then tr.S2/ D 0, i.e., S D 0 which shows that N is a trivial semi-
algebraic Ricci soliton, a contradiction.

As a consequence of Theorem 5.1 we also have the following formula for the covariant
derivative of the Ricci tensor in the direction of rw.

Proposition 5.3. If .M n; g/ is a homogeneous .�; nCm/-Einstein metric, then

rrw Ric D .mwL˛2/ŒS; A�:

Proof. By Theorem 5.1 M is a one-dimensional extension of a homogeneous space N
and

w D eLr ;

where r is the distance to N . This tells us that

1

w
Hessw D L2dr ˝ dr C Lg.T .�/; �/:

Taking the covariant derivative of both sides of the equation above gives us

rrw

� 1
w

Hessw
�
D LeLrg..rrrT /.�/; �/;

where we have used that rrr.dr ˝ dr/ D 0, which follows from a simple calculation since r
is a distance function.

Then by differentiating the .�; nCm/-Einstein equation we have that

rrw.Ric/ D mrrw
� 1
w

Hessw
�
D mLw.rrrT / D mLw˛

2ŒS; A�:

In the last equality we have used Proposition 2.7.
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This result, when combined with our earlier results, gives us the following results men-
tioned in the introduction.

Proof of Theorem 1.10. From Proposition 5.3, rrw Ric D 0 if and only if ŒA; S� D 0.
When ŒA; S� D 0, part (1) of Theorem 5.1 shows that M is the one-dimensional extension of a
normal semi-algebraic Ricci soliton.

Proof of Corollary 1.11. If w is constant, then the statement is trivial. If w is non-
constant, then we have that

gE D gM C w
2gRm ;

where w > 0. Moreover, gM is a one-dimensional extension of .N; gN /, a normal semi-
algebraic Ricci soliton.

By Theorem 3.1, N also admits a different one-dimensional extension which is �-Ein-
stein. The underlying manifold of this Einstein metric is also M D N �R. Denote this metric
by QgM . Then the metric

QgE D QgM C gHm

is a metric on E where gHm denotes the m-dimensional hyperbolic space with Ricci curva-
ture �.

Proof of Corollary 1.6. The case whenm D 0 follows from Theorem 3.2. Whenm � 1,
from Theorem 5.2 we know that N n�1 admits a homogeneous one-dimensional extensionM n

which is .�; nCm/-Einstein. From Theorem 4.7 the warped product of M with a space form
fiber Fm is both homogeneous and �-Einstein.

6. Left invariant metrics on Lie groups and algebraic Ricci solitons

In this section we specialize to Lie groups with left invariant metrics. In the first subsec-
tion we discuss general results about how W.G; g/ interacts with the Lie group structure of G.
In the second subsection we consider simply connected solvable Lie groups with left invariant
metrics and give a classification of such groups that have W.G; g/ ¤ ¹0º.

6.1. Left invariant metrics on Lie groups with W ¤ 0. Let .G; g/ be an n-dimen-
sional Lie group with left invariant metric such thatW�;nCm.G; g/ ¤ ¹0º. Combining Lemma
4.1 and Proposition 4.5, we have two cases. Either

(1) .G; g/ is isometric to a Riemannian product B � F k where B is a Lie group with left
invariant �-Einstein metric and F is a simply connected space form, or

(2) g D gB C eLrgRk , where L is a constant, B is a base manifold, r W B ! R is a smooth
distance function and

w D eLr 2 W�;nCm.G; g/;

where � < 0.

Note that, in either case, k could be zero. In case (1) we call the metric .G; g/ rigid and, in
case (2) we call the metric non-rigid.
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In the non-rigid case we can always re-parametrize the distance function r so that
r.e/ D 1, where e is the identity element of G. We call such a re-parametrized distance
function normalized. Below the distance function is usually assumed to be normalized.

The study of W.G; g/ in the rigid case reduces to studying the solutions on space forms
discussed in [7, Section 2] asW will consist of the pullbacks of functions v 2 W�;kCm.F; gF /.
In the second case we have the following more interesting interaction between properties of the
function u and the Lie group structure.

Proposition 6.1. Let .G; g/ be a non-rigid Lie group with left invariant metric and let
w 2 W�;nCm.G; g/ where w D eLr , L is a constant, and r is a normalized distance function.
Then r is the signed distance to a codimension one normal subgroup H and the vector field
� D rr is a left invariant vector field. In particular,

(6.1) Œ�; h� � h;

where h is the Lie algebra of H .

Proof. Let H be the level hypersurface w D 1. Since w.e/ D 1, the elements of H
are the elements whose left translation preserves w. In particular, H is a codimension one
normal subgroup in G. Thus we obtain a Riemannian submersion G ! G=H which is also
a Lie algebra homomorphism. This shows that left invariant vector fields on G=H lift to left
invariant vector fields on G that are perpendicular to H . As G=H D R it follows that rr is a
left invariant vector field on G:

For the last part note that

g.Œ�; X�; �/ D �2g.rrrrr; X/ D 0

for any X ? � .

In the spirit of Theorem 4.7, we now address the question of whether it is always possible
to build a left invariant Einstein metric from a Lie group with left invariant metric .G; g/ with
W.G; g/ ¤ 0.

In the rigid case we can see quickly that this is always true. Given v 2 W�;kCm.F; gF /,
let QF be the m-dimensional simply connected space form with Ricci curvature �F .v/. Define

E D G �v QF :

Then we have

E D B � .F �v QF / D B � OF ;

where OF is a simply connected space form. Clearly, E is naturally a Lie group with the product
structure coming from B and OF , and the metric, being a product of left invariant metrics on the
factors, is also left invariant.

In the non-rigid case we also have the following result.
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Theorem 6.2. Suppose that .G; g/ is a non-rigid Lie group with left invariant metric
such that

w D eLr 2 W�;nCm.G; g/;

where L is a constant, and r is a normalized distance function. Let E D G�w Rm with metric
gE D g C w2g0 where .Rm; g0/ is the Euclidean space. Then E is a Lie group and its Lie
algebra e is the abelian extension of the Lie algebra g of G by a D Rm with

Œ�; U � D �LU; ŒXi ; U � D 0 for any U 2 a; i D 1; : : : ; n � 1;

where ¹�º [ ¹Xiºn�1iD1 is an orthonormal basis of the metric Lie algebra g.

Proof. From Remark 4.8, in the non-rigid case we know that, for any x 2 G there is a
constant, Cx , such that u ı Lx�1 D Cxu where Lx�1 is the left multiplication of x�1 on G.
Cx induces an automorphism �.x; �/ of .Rm;C/ in the following way:

�.x; �/ W Rm ! Rm; a 7! Cxa:

For a fixed x 2 G, the differential N�.x/ of �.x/ is a Lie algebra isomorphism of the abelian Lie
algebra a which is the tangent space of the Lie group .Rm;C/ at the origin. In particular a is
isomorphic to .Rm;C/ and we have

N�.x/ W a! a; U 7! CxU:

From the formula w.x/ D eLr.x/, we also have

Cx D
w.e/

w.x/
D

1

eLr.x/
D e�Lr.x/:

On the total space E, a Lie group structure is given by the semidirect product G �w Rm which
is the Lie group with G �Rm as its underlying manifold and with multiplication and inversion
given by

.x; a/ � .y; b/ D .x � y; Cy�1aC b/; .x; a/�1 D .x�1;�Cxa/:

For the semi-direct product of two general Lie groups, see for example [12, Section I.15].
The map N� is a smooth homomorphism of G into Aut.a/, the automorphisms of a. The

differentialD N� is a homomorphism of the Lie algebra g of G into Der.a/, the derivations of a.
The Lie algebra e of E is given by the semi-direct product g˚D N� a, i.e., the Lie brackets of g

and a are preserved in e and, for any X 2 g, U 2 a we have

ŒX; U � D .D N�.X//.U /:

In the following we compute the map D N� .
Let ¹Xiºn�1iD0 be an orthonormal basis of g with X0 D � D rr je. For t 2 R let

x.t/ D exp.tXi /. If i � 1, then x.t/ 2 H and it follows that r.x.t// D 0. Thus Cx.t/ D 1

and N�.x.t// is the identity map for t 2 R. So its differential is zero, i.e., ŒXi ; U � D 0. Now we
are left with D N�.X0/. In this case we have r.x.t// D t and then

.D N�.X0//.U / D
d
dt
.e�LtU/ D �LU;

which shows that Œ�; U � D �LU .
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Remark 6.3. From the Lie algebra structure of e in Theorem 6.2 we have

e1 D Œe; e� D Œg;g�˚Rm D g1 ˚Rm;

e2 D Œe1; e1� D Œg1;g1� D g2

as g1 � h by Proposition 6.1. On the other hand from Proposition 6.1 again we have the
following relation in the commutator Lie algebras:

hiC1 � giC1 � hi for i � 0:

It follows that e is a solvable Lie algebra if and only if h is solvable.

6.2. Non-rigid solvable Lie groups with W ¤ 0. From Theorems 3.3 and 5.2, a one-
dimensional extension of an algebraic Ricci soliton .H; h/ admits a non-rigid .�; n C m/-
Einstein metric. We show a converse of this construction on solvmanifolds, i.e., any non-rigid
.�; nCm/-Einstein solvmanifold can be obtained in this way.

A solvmanifold with W�;nCm.G; g/ ¤ ¹0º which is rigid is a product of a �-Einstein
solvmanifold and a space form. Moreover, W�;nCm.G; g/ consists of functions which are
pullbacks of solutions on the space form factor. Thus, the study of these spaces reduces to
studying left invariant Einstein metrics on simply connected solvable Lie groups. There is a
rich structure to these spaces, see [9, 15] and the references therein.

In the non-rigid case, the group G shall be identified with its metric Lie algebra .g; h�; �i/
where g is the Lie algebra of G and h�; �i denotes the inner product on g which determines the
metric. We consider the orthogonal decomposition

g D a˚ n;

where n is the nilradical of g, i.e., the maximal nilpotent ideal. Assuming that .G; g/ is non-
rigid, by Proposition 6.1, the zero set of a normalized distance function H is a codimension
one normal subgroup. Let h be the induced metric on H . Then .H; h/ is also a solvmanifold
since, by equation (6.1), � 2 a. The Lie algebra h of H then has the decomposition

h D a0 ˚ n;

where a0 is the orthogonal complement of R� � a.

Theorem 6.4. Suppose that .G; g/ is a solvmanifold with W�;nCm.G; g/ ¤ ¹0º which
is non-rigid. Let H be the zero set of a normalized distance function with induced metric h.
Then .H; h/ is an algebraic Ricci soliton with RicH D �I CS where S 2 Der.h/ is symmetric
and h is the Lie algebra of H .

Remark 6.5. Recall that, under the hypothesis, � must be negative.

Proof. From Proposition 6.1 and Theorem 5.1 we know that H is a codimension one
normal subgroup of G and its Ricci curvature satisfies the following equation:

RicH D �I C S C
1

tr.S/ � �m
ŒS;A�;
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where the derivativeD is given in the proof of Theorem 5.1. To show that .H; h/ is an algebraic
Ricci soliton, it is sufficient to show that S , the symmetrization of D, is also a derivation, and
ŒS; A� D 0. Since D is given by 1

˛
ad� in Case I of Theorem 5.1, and by 1

˛
ad� on h1 and

��I on Rk in Case II of Theorem 5.1, we only have to show that .ad�/� is a derivation and
ad� is a normal operator. We prove this by considering the Einstein solvmanifold .E; gE / in
Theorem 6.2.

Recall that the derivation ad� is extended to e D R� ˚ h ˚ Rm by ad�.U / D �LU
for any U 2 Rm. The property that it is a normal operator and its adjoint is a derivation
of h holds if and only if its extension has the same property on e. In Theorem 6.2, we have
Œe; e� D n˚ Rm and its orthogonal complement is a which is abelian. It follows that .E; gE /
is of standard type. Since � 2 a, ad� is a normal operator by [9, Theorem B or Theorem 4.10].
In [16, Lemma 4.7], it is shown that this is equivalent to .ad�/� being a derivation.

Finally, using the structure results of algebraic Ricci soliton on solvmanifolds in [16], we
have the following characterization of non-rigid solvmanifolds.

Theorem 6.6. Let .G; g/ be a solvmanifold with metric Lie algebra .g; h�; �i/ and con-
sider orthogonal decompositions of the form g D a ˚ n and a D R� ˚ a0, where n is the
nilradical of g and r is a signed distance function with rr D � . Then .G; g/ is a non-rigid
space with eLr 2 W�;nCm.G; g/ from some constants L and m if and only if the following
conditions hold:

(i) .n; h�; �ijn�n/ is a nilsoliton with Ricci operator Ric1D �I CD1 for someD1 2Der.n/,

(ii) Œa; a� D 0,

(iii) .adA/� 2 Der.g/ (or equivalently, ŒadA; .adA/�� D 0) for all A 2 a,

(iv) hA;Ai D � 1
�

trS.adA/2 for all A 2 a0,

(v) trS.ad�/2 D �� �mL2.

Proof. From Theorems 3.3, 5.2 and 6.4, .G; g/ is a non-rigid space with

eLr 2 W�;nCm.G; g/

if and only if .H; h/ is an algebraic Ricci soliton, i.e., RicH D �I CD for some D 2 Der.h/,
and S.ad�/ D ˛D for some ˛ 2 R. From [16, Theorem 4.8], the structure results of algebraic
Ricci solitons on solvmanifolds, we have conditions (i), (ii), (iii) and (iv) for any h. In (iii)
the fact that .ad�/� 2 Der.g/ follows from that S.ad�/ is a derivation. The last condition
(v) follows from the facts that Ric.�; �/ D �.� C mL2/ and Ric.�; �/ D � trS.ad�/2. It is
equivalent to the existence of ˛ such that S.ad�/ D ˛D.

A. An alternative approach to semi-algebraic Ricci solitons

In this appendix we give an alternative approach to semi-algebraic Ricci solitons in terms
of Lie derivatives acting on vector fields. Since this approach does not rely on the additional
homogeneous structure of the manifold, it readily generalizes to a concept of a general Ricci
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soliton being semi-algebraic with respect to a given sub-algebra of vector fields. With this
definition we can see that any (not necessarily homogeneous) Ricci soliton is semi-algebraic
with respect to the algebra of Killing vector fields, generalizing the result in the homogeneous
case.

First we consider the homogeneous case. Let g be aG-homogeneous metric onM and let
g be the Lie algebra of G. For each Y 2 g the one-parameter subgroup on G generated by X ,
exp.tY /, defines a one-parameter group of diffeomorphisms �t on M . We can then identify Y
with the vector field on M generated by �t . In doing so, we identify g with the sub-algebra of
X.M/ consisting of Killing vector fields on .M; g/ which generate one-parameter subgroups
of G (recall that G is not necessarily the whole isometry group). With these identifications
we obtain the following equivalent criteria for a Ricci soliton to be semi-algebraic with respect
to G.

Proposition A.1. A G-homogeneous metric .M; g/ is a semi-algebraic Ricci soliton if
and only if there is a smooth vector field X on M such that

(A.1) Ricg D �g C
1

2
LXg

and the Lie derivative acting on vector fields

LX W X.M/! X.M/

leaves g � X.M/ invariant. Moreover, for a fixed point x, we can assume that X jx D 0 and
LX preserves gx D ¹Y 2 g W Y jx D 0º.

Proof. With respect to the fixed point x 2 M , with K denoting the isotropy at x and
Aut.G/K denoting the automorphisms of G that preserve K, using the proofs of [11, Proposi-
tions 2.2, 2.3], we can write a semi-algebraic Ricci soliton in the form

gt D .1 � 2�t/�
�
s.t/.g/;

where �s is defined by
�s.h � x/ D ˆs.h/ � x; h 2 G

andˆs D exp.sD/ 2 Aut.G/K for someD 2 Der.g/. LettingX D d
ds
jsD0�

�
s . Then equation

(A.1) is satisfied. Moreover, under the identification of vector fields with elements of g we can
see that

LXY D D.Y /:

Therefore, LX is a derivation when restricted to g � X.M/ and, in particular, must preserve g.
Conversely, suppose that we have a solution to (A.1) such that LX also preserves g. Fix

a point x 2 M . Since G acts transitively on M , there is a Killing vector field Y 2 g such
that Y jx D X jx . Replacing X by X � Y allows us to assume that X jx D 0. Moreover, since
Y 2 g, the Lie derivative LX will still preserve g.

Let �s be the one-parameter family of diffeomorphisms generated by X , then equation
(A.1) implies that

gt D .1 � 2�t/�
�
s.t/.g/
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is a solution to the Ricci flow. Since LX preserves g, it defines a derivation of g which we call
D. Since X jx D 0, we have that LX also preserves the subalgebra gx as

ŒX; Y �jx D rX jxY � rY jxX D 0:

Therefore, D will preserve K. Defining ˆs D exp.sD/ we then see that ˆ.K/ D K and

�s.hK/ D ˆs.h/K for h 2 G;

showing that .M; g/ is a semi-algebraic Ricci soliton.

Proposition A.1 can also be thought of as giving an alternative, intrinsic definition of
semi-algebraic Ricci solitons in terms of the sub-algebra g � X.M/. This leads to the follow-
ing definition for non-homogeneous Ricci solitons.

Definition A.2. Let .M; g;X/ be a (not necessarily homogeneous) Ricci soliton and let
g be an arbitrary subalgebra of X.M/. Then .M; g;X/ is semi-algebraic with respect to g if
LX W X.M/! X.M/ preserves g.

Proposition A.1 shows that this definition agrees with the definition of Jablonski in the
homogeneous case.

Remark A.3. We note that our definition of a semi-algebraic Ricci soliton depends on
the choice of the vector fieldX : the condition that LX preserves g is not invariant under adding
a general Killing vector field to X .

Jablonski also shows in [11] that every homogeneous Ricci soliton is algebraic with re-
spect to its isometry group. This result can easily be seen to generalize to the non-homogeneous
case.

Proposition A.4. Every Ricci soliton is semi-algebraic with respect to the subalgebra
of Killing vector fields g D iso.M; g/.

Proof. Let Y be a Killing vector field, then

LŒX;Y �g D LXLY g �LYLXg D �2LY .Ric��g/ D 0;

i.e., ŒX; Y � is also a Killing vector field.
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