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To the memory of Detlef Gromoll

Abstract

For Riemannian manifolds with a measure (M, g, e−fdvolg) we
prove mean curvature and volume comparison results when the ∞-
Bakry-Emery Ricci tensor is bounded from below and f or |∇f | is
bounded, generalizing the classical ones (i.e. when f is constant).
This leads to extensions of many theorems for Ricci curvature
bounded below to the Bakry-Emery Ricci tensor. In particular,
we give extensions of all of the major comparison theorems when
f is bounded. Simple examples show the bound on f is necessary
for these results.

1. Introduction

In this paper we study smooth metric measure spaces (Mn, g, e−f

dvolg), where M is a complete n-dimensional Riemannian manifold with
metric g, f is a smooth real valued function on M , and dvolg is the Rie-
mannian volume density on M . These objects have been used exten-
sively in geometric analysis and Kähler geometry, they play an essential
role in Perelman’s work on the Ricci flow, and they arise as smooth col-
lapsed measured Gromov-Hausdorff limits. f is also referred to as the
dilaton field in the physics literature. Smooth metric measure spaces are
also called manifolds with density. In this paper by the Bakry-Emery
Ricci tensor we mean

Ricf = Ric + Hessf.

This is also referred to as the ∞-Bakry-Emery Ricci Tensor. Bakry
and Emery [4] extensively studied (and generalized) this tensor and its
relationship to diffusion processes. The Bakry-Emery tensor also occurs
naturally in many different subjects, see e.g. [24] and [31, 1.3]. The
equation Ricf = λg for some constant λ is exactly the gradient Ricci
soliton equation, which plays an important role in the theory of Ricci
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flow. Moreover Ricf has a natural extension to metric measure spaces
[23, 42, 43].

The purpose of this paper is to investigate which geometric and topo-
logical results for manifolds with a lower bound on the Ricci tensor ex-
tend to smooth metric measure spaces with Bakry-Emery Ricci tensor
bounded below. Interestingly, Lichnerowicz [21] studied this problem at
least ten years before the work of Bakry and Emery. This question has
also been investigated by a number of recent authors. We will discuss
some of these results below but the interested reader should also see
Chapter 18 of [28] and the references therein. For another modification
of the Ricci tensor involving conformal geometry see [9].

The starting point for comparison geometry of Ricci curvature is the
Bochner formula. Let u ∈ C3(M), then

1

2
∆|∇u|2 = |Hess u|2 + Ric(∇u,∇u) + g(∇∆u,∇u).

If a Riemannian manifold has a lower bound on Ricci curvature one
applies this formula to the distance function to obtain a Ricatti equa-
tion which is then used to prove the mean curvature (or Laplacian)
comparison. The mean curvature comparison can then be used as a
tool to establish classical comparison theorems for Ricci curvature such
as Myers’ theorem, the Bishop-Gromov volume comparison theorem,
the Cheeger-Gromoll splitting theorem, and the Abresch-Gromoll ex-
cess estimate. See Zhu’s survey paper [53] for an excellent account of
this approach.

The mean curvature is important because it measures the relative
rate of change of the volume element of the geodesic sphere. For the
measure e−fdvol, the weighted (or f -)mean curvature is mf = m −
∂rf, where m is the mean curvature of the geodesic sphere with inward
pointing normal vector. The self-adjoint (f -)Laplacian with respect to
the weighted measure is ∆f = ∆−∇f ·∇. Note that mf = ∆f (r), where
r is the distance function. For the f -Laplacian a simple calculation gives
the following Bochner formula,

1

2
∆f |∇u|2 = |Hessu|2 + Ricf (∇u,∇u) + g(∇∆fu,∇u).

At first this looks very similar to the classical Bochner formula. How-
ever, since tr(Hessu) 6= ∆f (u), one does not immediately obtain a Ri-
catti equation. Indeed, in the next section we give a quick overview with
examples where the Myers’ theorem, Bishop-Gromov’s volume compari-
son, Cheeger-Gromoll’s splitting theorem, and Abresch-Gromoll’s excess
estimate are not true when Ricf is bounded below, so the comparison
theory here is more subtle.
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One way around this difficulty is to replace Ricf by the“N”-Bakry-
Emery tensor

(1.1) RicN
f = Ricf − df ⊗ df

N
.

This extra gradient term then allows one to obtain a Ricatti equation
which is identical to the one obtained for a Riemannian manifold of
dimension n + N . One can then proceed as in the classical case to
obtain versions for the N -Bakry-Emery tensor of all the theorems listed
above. We sketch out this approach in the Appendix.

In this paper we take a different approach. Instead of modifying the
Ricci tensor to simplify the ODE along geodesics, we deal with the ODE
directly. We then obtain comparisons that depend on a lower bound on
Ricf and bounds on f or the first derivative of f along geodesics. Using
this method we prove three mean curvature comparisons. The first (see
Theorem 3.1) is the most general, requiring no assumptions on f , and
is quite simple to prove. It appears implicitly in the work of Morgan
[27], and Naber [29] and it recovers some interesting applications for
manifolds with positive Bakry-Emery tensor (Corollaries 5.1 and 5.2).
The other two are more delicate and require assumptions on f but have
stronger applications.

Theorem 1.1 (Mean Curvature Comparison). Let p ∈Mn. Assume
Ricf (∂r, ∂r) ≥ (n− 1)H.

a) If ∂rf ≥ −a (a ≥ 0) along a minimal geodesic segment from p

(when H > 0 assume r ≤ π/2
√
H) then

(1.2) mf (r) −mH(r) ≤ a

along that minimal geodesic segment from p. Equality holds if and only
if the radial sectional curvatures are equal to H and f(t) = f(p) − at
for all t < r.

b) If |f | ≤ k along a minimal geodesic segment from p (when H > 0

assume r ≤ π/4
√
H) then

(1.3) mf (r) ≤ mn+4k
H (r)

along that minimal geodesic segment from p. In particular when H = 0
we have

(1.4) mf (r) ≤ n+ 4k − 1

r
.

Here mn+4k
H is the mean curvature of the geodesic sphere in Mn+4k

H ,
the simply connected model space of dimension n + 4k with constant
curvatureH and mH is the mean curvature of the model space of dimen-

sion n. See (3.18) in Section 3 for the case H > 0 and r ∈
[

π

4
√

H
, π

2
√

H

]

in part b.
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As in the classical case, these mean curvature comparisons have many
applications. First, we have volume comparison theorems. Let
Volf (B(p, r)) =

∫

B(p,r) e
−fdvolg, the weighted (or f -)volume and

VolnH(r) be the volume of the radius r-ball in the model space Mn
H .

Theorem 1.2 (Volume Comparison.). Let (Mn, g, e−fdvolg) be com-
plete smooth metric measure space with Ricf ≥ (n− 1)H. Fix p ∈Mn.

a) If ∂rf ≥ −a along all minimal geodesic segments from p then for

R ≥ r > 0 (assume R ≤ π/2
√
H if H > 0),

(1.5)
Volf (B(p,R))

Volf (B(p, r))
≤ eaR VolnH(R)

VolnH(r)
.

Moreover, equality holds if and only if the radial sectional curvatures
are equal to H and ∂rf ≡ −a. In particular if ∂rf ≥ 0 and Ricf ≥ 0
then M has f -volume growth of degree at most n.

b) If |f(x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4
√
H if H > 0),

(1.6)
Volf (B(p,R))

Volf (B(p, r))
≤ Voln+4k

H (R)

Voln+4k
H (r)

.

In particular, if f is bounded and Ricf ≥ 0 then M has polynomial
f -volume growth.

Remark. 1. When Ricf ≥ 0 the condition f is bounded or ∂rf ≥ 0
is necessary to show polynomial f -volume growth as shown by Exam-
ple 2.3. Similar statements are true for the volume of tubular neigh-
borhood of a hypersurface. See Section 4 for another version of volume
comparison which holds for all r > 0 even when H > 0.

Remark. 2. To prove the theorem we only need a lower bound on Ricf

along the radial directions. Given any manifoldMn with Ricci curvature
bounded from below one can always choose suitable f to get any lower
bound for Ricf along the radial directions. For example if Ric ≥ −1
and p ∈M , if we choose f(x) = r2 = d2(p, x), then Ricf (∂r, ∂r) ≥ 1.

Remark. 3. Volume comparison theorems have been proven for mani-
folds with N -Bakry Emery Ricci tensor bounded below. See Qian [39],
Bakry-Qian [6], Lott [24], and Appendix A. Since RicN

f ≥ 0 implies
Ricf ≥ 0 our result greatly improves the volume comparison result of
Qian when N is big and f is bounded, or when ∂rf ≥ 0.

The mean curvature and volume comparison theorems have many
other applications. We highlight two extensions of theorems of Calabi-
Yau [51] and Myers’ to the case where f is bounded.

Theorem 1.3. If M is a noncompact, complete manifold with Ricf ≥
0 for some bounded f then M has at least linear f -volume growth.

Theorem 1.4 (Myers’ Theorem). If M has Ricf ≥ (n − 1)H > 0

and |f | ≤ k then M is compact and diamM ≤ π√
H

+ 4k

(n−1)
√

H
.
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Examples 2.1 and 2.2 show that the assumption of bounded f is
necessary in both theorems. Qian [39] has proven versions of both
theorems for RicN

f . For other Myers’ theorems see [14, 52, 20, 27].
The paper is organized as follows. In the next section we discuss some

simple examples and some alternate motivations for the Bakry-Emery
tensor. Then in the third section we prove the mean curvature compar-
isons. In Sections 4 and 5 we prove the volume comparison theorems and
discuss their applications, including Theorem 1.3. In Section 6 we apply
the mean curvature comparison to prove the splitting theorem for the
Bakry-Emery tensor that is originally due to Lichnerowicz. In Section
7 we discuss some other applications of the mean curvature compari-
son including the Myers’ theorem and an extension Abresch-Gromoll’s
excess estimate to Ricf . Finally in Appendix A we state the mean cur-

vature comparison for RicN
f . This is a special case of an estimate in [6],

but we have written the result in more Riemannian geometry friendly
language. This gives other proofs of the comparison theorems for RicN

f

mentioned above. See [45] for a survey in this direction and [8] for the
equality case.

After posting the original version of this paper in June 2007 we
learned from Fang, Li, and Zhang about their work which is closely
related to some of our work here [12]. We thank them for sharing their
work with us. Motivated from their paper we were able to strengthen the
original version of Theorem 1.1 and Theorem 1.2 and give a new proof
to Theorem 1.1. This proof of the mean curvature comparison seems to
us to be new even in the classical Ricci curvature case. We have moved
our original proof using ODE methods to an appendix because we feel
it might be useful in other applications.

From the work of [34] one expects that the volume comparison and
splitting theorem can be extended to the case that Ricf is bounded from
below in the integral sense. We also expect similar versions for metric
measure spaces. These will be treated in separate paper.

Acknowledgments. We thank Matthew Gursky for making us aware
of the work of Lichnerowicz. The authors also would like to thank
John Lott, Peter Petersen and Burkhard Wilking for their interest and
helpful discussions. Part of the work was done while the authors visited
MSRI. We would like to thank MSRI for its hospitality during their
stay. We would also like to thank the referree for making many helpful
suggestions on the exposition and for encouraging us to include some of
the motivational material included in the next section.

2. Some further motivation and examples

In this section we will discuss the simple examples which show that
the classical comparison theorems for Ricci curvature do not hold for



382 G. WEI & W. WYLIE

only a lower bound on the Bakry-Emery tensor. We also discuss a
few different viewpoints on the Bakry-Emery tensor which we hope will
motivate our results.

One very interesting reason to study smooth metric measure spaces
is the fact, observed by Lott in [24], that they are examples of collapsed
measured Gromov-Hausdorff limits. To see this consider (Mn×FN , gǫ),
where M and F are compact, with the warped product metric gǫ =
gM + (ǫe−f )2gF . Then, as ǫ→ 0,

(

Mn × FN , d̃volgǫ

)

mGH−→
(

Mn, e−NfdvolgM

)

.

Here d̃volgǫ =
dvolgε

Vol(Bgε (·,1)) is a renormalized Riemannian measure.

Recall that a sequence of compact metric measure spaces (Xi, µi)
mGH−→

(X∞, µ∞) if the metric spaces converge in the Gromov-Hausdorff sense
and for all sequences of continuous functions fi : Xi → R converging to
f∞ : X∞ → R, we have

∫

Xi

fidµi →
∫

X∞

f∞dµ∞.

By O’Neill’s formula, the Ricci curvature of the warped product met-
ric gǫ applied to vectors v,w tangent to the M factor is

Ricgε(v,w) = RicgM
(v,w) + HessgM

f(v,w) − df ⊗ df

N
(v,w).

This gives another motivation for the definition of RicN
f in (1.1).

It is also instructive to consider the relationship between the Bakry-
Emery tensor and the characterization of lower bounds on sectional
curvature in the spirit of Alexandrov. That is, in terms of concavity
properties of distance functions. For example a manifold has nonnega-
tive sectional curvature if and only if

Hess r2 ≤ 0

for all distance functions r. The corresponding characterization for Ricci
curvature is in terms of the concavity of the volume form in polar coor-
dinates

dvolg = A(r, θ)dr ∧ dθn−1.

Indeed a standard calculation is that

∂2

∂r2
(A

1

n−1 ) ≤ −Ric(∂r, ∂r)

n− 1
A

1

n−1 .

So Ric measures the relative second derivative of the volume form.
If we do this calculation for the weighted volume form written in polar
coordinates

e−fdvolg = Af (r, θ)dr ∧ dθn−1 = e−fA(r, θ)dr ∧ dθn−1
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we obtain

∂2

∂r2
(A

1

n−1

f ) ≤
(

−Ricf (∂r, ∂r) − 2
∂f

∂r

m(r, θ)

n− 1

) Af

n− 1
.

Thus from this perspective it seems natural to make assumptions
about the boundedness of f or ∂f

∂r
, although this equation, in itself,

does not easily give us results because of the m(r, θ) term. Thus we are
also motivated to consider mf instead of m.

We now move on to the examples. The most well known example is
the following soliton, often referred to as the Gaussian soliton.

Example 2.1. Let M = Rn with Euclidean metric g0, f(x) = λ
2 |x|2.

Then Hessf = λg0 and Ricf = λg0.

This example shows that, unlike the case of Ricci curvature uniformly
bounded from below by a positive constant, a metric measure space is
not necessarily compact if Ricf ≥ λg and λ > 0.

From this we construct the following.

Example 2.2. Let M = Hn be the hyperbolic space. Fixed any
p ∈M , let f(x) = (n− 1)r2 = (n− 1)d2(p, x). Now Hess r2 = 2|∇r|2 +
2rHessr ≥ 2I, therefore Ricf ≥ (n− 1).

This example shows that the Cheeger-Gromoll splitting theorem and
Abresch-Gromoll’s excess estimate do not hold for Ricf ≥ 0, in fact
they don’t even hold for Ricf ≥ λ > 0. Note that the only proper-
ties of hyperbolic space used are that Ric ≥ −(n − 1) and that Hess
r2 ≥ 2I. Therefore any Cartan-Hadamard manifold with Ricci curva-
ture bounded below has a metric with Ricf ≥ 0 since Hess r2 ≥ 2I for
these spaces. On the other hand these examples are not topologically
very interesting. In fact, if Ric < 0 and Ricf ≥ λ > 0 then Hessf > λg
which implies M is diffeomorphic to Rn.

A large class of examples are given by gradient Ricci solitons. Com-
pact expanding or steady solitons are Einstein (f is constant) [31].
There are nontrivial compact shrinking solitons [7, 11, 13, 17]. Some
of these examples do not have nonnegative Ricci curvature.

The following example shows that there are manifolds with Ricf ≥ 0
which do not have polynomial f -volume growth.

Example 2.3. Let M = Rn with Euclidean metric, f(x1, · · · , xn) =
x1. Since Hess f = 0, Ricf = Ric = 0. On the other hand Volf (B(0, r))
is of exponential growth. Along the x1 direction, mf −mH = −1 which
does not goes to zero.

In this example |∇f | ≤ 1, so Ricf ≥ 0 and |∇f | bounded does not
imply polynomial f -volume growth either.

It is also natural to consider the scalar curvature with measure. As
pointed out by Perelman in [31, 1.3] the corresponding scalar curvature
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equation is Sf = 2∆f − |∇f |2 + S. Note that this is different than
taking the trace of Ricf which is ∆f + S. The Lichnerovicz formula
and theorem naturally extend to Sf while any compact manifold has a
Riemannian metric and function f with ∆f + S > 0.

On the other hand, if a compact manifold has Ricf > 0 then the

Â-genus must be zero. This was pointed out to us by Aubry. To see
it first note that RicN

f > ǫg for some sufficiently large N and small ǫ.
Now, consider the warped product construction of Lott mentioned above
taking FN to be a Ricci flat manifold which has non-zero Â-genus. (For
example, a sufficiently large product of K3-surfaces.) In the warped
product metric, the Ricci tensor on vectors tangent to M is RicN

f and
the Ricci curvature of vectors tangent to F will shrink arbitrarily to
zero if we scale the warping function. Therefore, by sufficiently scaling
F , we obtain a warped product metric on M × F which has positive
scalar curvature (but not positive Ricci curvature). Then

0 = Â(M × F ) = Â(M) · Â(F )

so Â(M) = 0.

3. Mean Curvature Comparisons

In this section we prove the mean curvature comparison theorems.
First we give a rough estimate on mf which is useful when Ricf ≥ λg
and λ > 0.

Theorem 3.1 (Mean Curvature Comparison I.). If Ricf (∂r, ∂r) ≥ λ
then given any minimal geodesic segment and r0 > 0,

(3.1) mf (r) ≤ mf (r0) − λ(r − r0) for r ≥ r0.

Equality holds for some r > r0 if and only if all the radial sectional
curvatures are zero, Hessr ≡ 0, and ∂2

rf ≡ λ along the geodesic from r0
to r.

Proof. Applying the Bochner formula

(3.2)
1

2
∆|∇u|2 = |Hess u|2 + 〈∇u,∇(∆u)〉 + Ric(∇u,∇u)

to the distance function r(x) = d(x, p), we have

(3.3) 0 = |Hess r|2 +
∂

∂r
(∆r) + Ric(∇r,∇r).

Since Hess r is the second fundamental from of the geodesic sphere and
∆r is the mean curvature, with the Schwarz inequality, we have the
Riccati inequality

(3.4) m′ ≤ − m2

n− 1
− Ric(∂r, ∂r).
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And equality holds if and only if the radial sectional curvatures are
constant. Hence the mean curvature of the model space mH satisfies

(3.5) m′
H = − m2

H

n− 1
− (n− 1)H.

Since m′
f = m′ − Hessf (∂r, ∂r), we have

(3.6) m′
f ≤ − m2

n− 1
− Ricf (∂r, ∂r).

If Ricf ≥ λ, we have

m′
f ≤ −λ.

This immediately gives the inequality (3.1).
To see the equality statement, supposem′

f ≡ −λ on an interval [r0, r],

then from (3.6) we have m ≡ 0 and

(3.7) m′
f = −∂2

rf = −Ricf (∂r, ∂r) = −λ.
So we also have Ric(∂r, ∂r) = 0. Then by (3.3) Hess r = 0, which implies
the sectional curvatures must be zero. q.e.d.

Proof of Theorem 1.1. Let snH(r) be the solution to

sn′′
H +HsnH = 0

such that snH(0) = 0 and sn′
H(0) = 1. Then

(3.8) mn
H = (n− 1)

sn′
H

snH
.

From the Riccati inequality (3.4), equality (3.5), and assumption on
Ricf , we have

(3.9) (m−mH)′ ≤ −m
2 −m2

H

n− 1
+ ∂r∂rf.

We compute
(

sn2
H(m−mH)

)′
= 2sn′

HsnH(m−mH) + sn2
H(m−mH)′

≤ sn2
H

(

2mH

n− 1
(m−mH) − m2 −m2

H

n− 1
+ ∂r∂rf

)

= sn2
H

(

−(m−mH)2

n− 1
+ ∂r∂rf

)

≤ sn2
H ∂r∂rf.(3.10)

Here in the 2nd line we have used (3.8) and (3.9).
Integrating (3.10) from 0 to r yields

(3.11) sn2
H(r)m(r) ≤ sn2

H(r)mH(r) +

∫ r

0
sn2

H(t)∂t∂tf(t)dt.



386 G. WEI & W. WYLIE

When f is constant (the classical case) this gives the usual mean curva-
ture comparison. This quick proof does not seem to be emphasized in
the literature.

Proof of Part a. Using integration by parts on the last term we have

(3.12) sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) −
∫ r

0
(sn2

H(t))′∂tf(t)dt.

Under our assumptions (sn2
H(t))′ = 2sn′

H(t)snH(t) ≥ 0 so if ∂tf(t) ≥ −a
we have

(3.13) sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + a

∫ r

0
(sn2

H(t))′dt

= sn2
H(r)mH(r) + sn2

H(r)a.

This proves the inequality.
To see the rigidity statement suppose that ∂tf ≥ −a and mf (r) =

mH(r) + a for some r. Then from (3.12) we see

(3.14) a sn2
H ≤

∫ r

0
(sn2

H(t))′∂tf(t)dt ≤ a sn2
H .

So that ∂tf ≡ −a. But then m(r) = mf−a = mH(r) so that the rigidity
follows from the rigidity for the usual mean curvature comparison.

Proof of Part b. Integrate (3.12) by parts again
(3.15)

sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) − f(r)(sn2
H(r))′ +

∫ r

0
f(t)(sn2

H)′′(t)dt.

Now if |f | ≤ k and r ∈ (0, π

4
√

H
] when H > 0, then (sn2

H)′′(t) ≥ 0 and

we have

(3.16) sn2
H(r)mf (r) ≤ sn2

H(r)mH(r) + 2k(sn2
H(r))′.

From (3.8) we can see that

(sn2
H(r))′ = 2sn′

HsnH =
2

n− 1
mHsn2

H .

so we have

(3.17) mf (r) ≤
(

1 +
4k

n− 1

)

mH(r) = mn+4k
H (r).

q.e.d.

Now when H > 0 and r ∈
[

π

4
√

H
, π

2
√

H

]

,

∫ r

0
f(t)(sn2

H)′′(t)dt ≤ k

(

∫ π

4
√

H

0
(sn2

H)′′(t)dt −
∫ r

π

4
√

H

(sn2
H)′′(t)dt

)

= k

(

2√
H

− snH(2r)

)

.
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Hence

(3.18) mf (r) ≤
(

1 +
4k

n− 1
· 1

sin(2
√
Hr)

)

mH(r).

This estimate will be used later to prove the Myers’ theorem in Section
5.

Remark. In the case H = 0, we have snH(r) = r so (3.15) gives the
estimate in [12] that

(3.19) mf (r) ≤ n− 1

r
− 2

r
f(r) +

2

r2

∫ r

0
f(t)dt.

Remark. The exact same argument gives mean curvature comparison
for the mean curvature of distance sphere of hypersurfaces with Ricf

lower bound.

4. Volume Comparisons

In this section we prove the volume comparison theorems. Fix p ∈
Mn, use exponential polar coordinates around p and write the volume
element d vol = A(r, θ)dr ∧ dθn−1, where dθn−1 is the standard volume
element on the unit sphere Sn−1(1). Let Af (r, θ) = e−fA(r, θ). By the
first variation of the area (see [53])

(4.1)
A′

A (r, θ) = (ln(A(r, θ)))′ = m(r, θ).

Therefore

(4.2)
A′

f

Af

(r, θ) = (ln(Af (r, θ)))′ = mf (r, θ).

And for r ≥ r0 > 0

(4.3)
Af (r, θ)

Af (r0, θ)
= e

R r

r0
mf (s,θ)ds

.

The volume comparison theorems follow from the mean curvature com-
parisons through this equation.

First applying the mean curvature estimate Theorem 3.1 we have the
following basic volume comparison theorem.

Theorem 4.1 (Volume Comparison I). Let Ricf ≥ λ then for any r
there are constants A, B, and C such that

Volf (B(p,R)) ≤ A+B

∫ R

r

e−
λ
2
t2+Ctdt.

The version of Theorem 4.1 for tubular neighborhoods of hypersur-
faces is very similar and has been proven by Morgan [26], also see [27].
As Morgan points out, the theorem is optimal and the constants can
not be uniform as the Gaussian soliton shows, see Example 2.1.
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Proof. Using the mean curvature estimate (3.1)
∫ r

r0

mf (r) ≤ mf (r0)r −
1

2
λr2.

Hence

Af (r, θ) ≤ Af (r0, θ)e
mf (r0,θ)r− 1

2
λr2

.

Now let A(p, r0, r) be the annulus A(p, r0, r) = B(p, r) \B(p, r0). Then

Volf (A(p, r0, r)) =

∫ r

r0

∫

Sn−1

Af (s, θ)dθds(4.4)

≤
∫ r

r0

∫

Sn−1

Af (r0, θ)e
mf (r0,θ)s− 1

2
λs2

dθds(4.5)

≤ Af (r0)

∫ r

r0

eCs− 1

2
λs2

ds.(4.6)

Where Af (r0) is the surface area of the geodesic sphere induced from
the f -volume element and C is a constant such that C ≥ mf (r0, θ) for
all θ where it is defined. Since Volf (B(p, r)) = Volf (Vol(B(p, r0)) +
Volf (A(p, r0, r)) this proves the theorem. q.e.d.

We also have a rigidity statement for (4.5). That is, if the inequality
(4.5) is an equality then we must have equalities in the mean curvature
comparison along all the geodesics, this implies that Hess r ≡ 0 which
implies that

(4.7) A(p, r0, r) ∼= S(p, r0) × [r0, r]

where S(p, r0) is the geodesic sphere with radius r0. Moreover f must
also be rigid, namely

f(x, t) = f(x) + ∂rf(x)(r − r0) +
λ

2
(r − r0)

2.

Now we prove Theorem 1.2 using Theorem 1.1.

Proof of Theorem 1.2: For Part a) we compare with a model space, how-
ever, we modify the measure according to a. Namely, the model space
will be the pointed metric measure space Mn

H,a = (Mn
H , gH , e

−hdvol, O)

where (Mn
H , gH) is the n-dimensional simply connected space with con-

stant sectional curvatureH, O ∈Mn
H , and h(x) = −a·d(x,O). We make

the model a pointed space because the space only has Ricf (∂r, ∂r) ≥
(n− 1)H in the radial directions from O and we only compare volumes
of balls centered at O.

Let Aa
H be the h-volume element in Mn

H,a. Then Aa
H(r) = earAH(r)

where AH is the Riemannian volume element in Mn
H . By the mean

curvature comparison we have (ln(Af (r, θ))′ ≤ a +mH = (ln(Aa
H))′ so
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for r < R,

(4.8)
Af (R, θ)

Af (r, θ)
≤ Aa

H(R, θ)

Aa
H(r, θ)

.

Namely
Af (r,θ)
Aa

H
(r,θ) is nonincreasing in r. Using Lemma 3.2 in [53], we get

for 0 < r1 < r, 0 < R1 < R, r1 ≤ R1, r ≤ R,

(4.9)

∫ R

R1
Af (t, θ)dt

∫ r

r1
Af (t, θ)dt

≤
∫ R

R1
Aa

H(t, θ)dt
∫ r

r1
Aa

H(t, θ)dt
.

Integrating along the sphere direction gives

(4.10)
Volf (A(p,R1, R))

Volf (A(p, r1, r))
≤ VolaH(R1, R)

VolaH(r1, r)
.

Where VolaH(r1, r) is the h-volume of the annulus B(O, r) \B(O, r1) ⊂
Mn

H . Since VolH(r1, r) ≤ VolaH(r1, r) ≤ earVolH(r1, r) this gives (1.5)
when r1 = R1 = 0 and proves Part b).

In the model space the radial function h is not smooth at the ori-
gin. However, clearly one can smooth the function to a function with
∂rh ≥ −a and ∂2

rh ≥ 0 such that the h-volume taken with the smoothed
h is arbitrary close to that of the model. Therefore, the inequality (4.10)
is optimal. Moreover, one can see from the equality case of the mean
curvature comparison that if the annular volume is equal to the volume
in the model then all the radial sectional curvatures are H and f is
exactly a linear function.

Proof of Part b). In this case let An+4k
H be the volume element in the

simply connected model space with constant curvatureH and dimension
n+ 4k.

Then from the mean curvature comparison we have ln(Af (r, θ))′ ≤
ln(An+4k

H (r))′. So again applying Lemma 3.2 in [53] we obtain

(4.11)
Volf (A(p,R1, R))

Volf (A(p, r1, r))
≤ V oln+4k

H (R1, R)

V oln+4k
H (r1, r)

.

With r1 = R1 = 0 this implies the relative volume comparison for balls

(4.12)
Volf (B(p,R))

Volf (B(p, r))
≤ V oln+4k

H (R)

V oln+4k
H (r)

.

Equivalently

(4.13)
Volf (B(p,R))

V n+4k
H (R)

≤ Volf (B(p, r))

V n+4k
H (r)

.

Since n+ 4k > n we note that the right hand side blows up as r → 0 so
one does not obtain a uniform upper bound on Volf (B(p,R)). Indeed,
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it is not possible to do so since one can always add a constant to f and
not effect the Bakry-Emery tensor.

By taking r = 1 we do obtain a volume growth estimate for R > 1

(4.14) Volf (B(p,R)) ≤ Volf (B(p, 1))Voln+4k
H (R).

Note that, from Part a) Volf (B(p, 1)) ≤ e−f(p)eaωn if ∂rf ≥ −a on
B(p, 1). q.e.d.

In the next section we collect the applications of the volume compar-
ison theorems.

5. Applications of the volume comparison theorems.

In the case where λ > 0 Theorem 4.1 gives two very interesting
corollaries. The first is also observed in [26].

Corollary 5.1. If M is complete and Ricf ≥ λ > 0 then Volf (M) is
finite and M has finite fundamental group.

We note the finiteness of volume is true in the setting of more general
diffusion operators [4]. Using a different approach the second author
has proven that the fundamental group is finite for spaces satisfying
Ric + LXg ≥ λ > 0 for some vector field X [48]. This had earlier
been shown under the additional assumption that the Ricci curvature
is bounded by Zhang [52]. See also [29]. When M is compact the
finiteness of fundamental group was first shown by X. Li [20, Corollary
3] using a probabilistic method. Also see [52, 14, 39, 24]. We would
like to thank Prof. David Elworthy for bringing the article [20] to our
attention.

The second corollary is the following Liouville Theorem, which is a
strengthening of a result of Naber [29].

Corollary 5.2. If M is complete with Ricf ≥ λ > 0, u ≥ 0, ∆f (u) ≥
0, and there is α < λ

2 such that u(x) ≤ eαd(p,x)2 for some p ∈M then u
is constant.

In particular there are no bounded f -subharmonic functions. Corol-
lary 5.2 follows from Yau’s proof that a complete manifold has no pos-
itive Lp (p > 1) subharmonic functions [51]. The argument only uses
integration by parts and a clever choice of test function and so is valid
also for the weighted measure and Laplacian, see Theorem 4.2 in [38] for
a complete proof. In addition to the paper of Naber mentioned above,
also see [36, 37, 38] for applications of Corollary 5.2 to gradient Ricci
solitons.

While Theorem 4.1 has applications when λ > 0 it is not strong
enough to extend results for a general lower bound, for these results
we apply Theorem 1.2. It is well known that a lower bound on volume
growth for manifolds with Ric ≥ 0 can be derived from the volume
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comparison for annulli, see [53]. Thus Theorem 1.3 follows from (4.11).
We give the proof here for completeness and to motivate Theorem 5.3.

Proof of Theorem 1.3. Let M be a manifold with Ricf ≥ 0 for a bounded
function f . Let p ∈ M and let γ be a geodesic ray based at p in M .
Then, applying the annulus relative volume comparison (4.11) to annuli
centered at γ(t), we obtain

Volf (B(γ(t), t− 1))

Volf (A(γ(t), t − 1, t+ 1))
≥ (t− 1)n+4k

(t+ 1)n+4k − (t− 1)n+4k
≥ c(n, k)t

∀ t ≥ 2. But B(γ(0), 1) ⊂ A(γ(t), t − 1, t+ 1) so we have

Volf (B(p, t− 1)) ≥ c(n, k)Volf (B(p, 1))t ∀t ≥ 2.

q.e.d.

Using the volume comparison (4.10) in place of (4.11) we can also
prove a lower bound on the volume growth for certain convex f .

Theorem 5.3. If Ricf ≥ 0 where f is convex function such that
the set of critical points of f is unbounded, then M has at least linear
f -volume growth.

The hypothesis on the critical point set is necessary by Examples 2.1
and 2.2.

Proof. Fix p ∈ M . Since the set of critical points of a convex function
is connected, for every t there is x(t), a critical point of f , such that
d(p, x(t)) = t. But ∇f(x(t)) = 0 and f is convex so ∂rf ≥ 0 in all the
radial directions from x(t), therefore we can apply (4.10) and repeat the
arguments in the proof of Theorem 1.3 to prove the result. q.e.d.

In [25] Milnor observed that polynomial volume growth on the univer-
sal cover of a manifold restricts the structure of its fundamental group.
Thus Theorem 1.2 also implies the following extension of Milnor’s The-
orem.

Theorem 5.4. Let M be a complete manifold with Ricf ≥ 0.

1) If f is a convex function that obtains its minimum then any finitely
generated subgroup of π1(M) has polynomial growth of degree less
than or equal n. In particular, b1(M) ≤ n.

2) If |f | ≤ k then any finitely generated subgroup of π1(M) has poly-
nomial growth of degree less than or equal to n+4k. In particular,
b1(M) ≤ n+ 4k.

Remark. Part 1) follows because at a pre-image of the minimum point
in the universal cover, ∂rf ≥ 0.

Remark. Part 2) has been improved recently by Yang [50] to the
optimal “ ≤ n.” For the compact case this can also be proven using the
splitting theorem, see the next section.
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Gromov [15] has shown that a finitely generated group has polyno-
mial growth if and only if it is almost nilpotent. Moreover, the work of
the first author and Wilking shows that any finitely generated almost
nilpotent group is the fundamental group of a manifold with Ric ≥ 0
[44, 46]. Therefore, there is a complete classification of the finitely
generated groups that can be realized as the fundamental group of a
complete manifold with Ric ≥ 0. Combining these results with Theo-
rem 5.4 we expand this classification to a larger class of manifolds.

Corollary 5.5. A finitely generated group G is the fundamental
group of some manifold with

1) Ricf ≥ 0 for some bounded f or
2) Ricf ≥ 0 for some convex f which obtains its minimum

if and only if G is almost nilpotent.

It would be interesting to know if Corollary 5.5 holds without any
assumption on f . Example 2.3 shows that the Milnor argument can not
be applied since the f -volume growth of a manifold with Ricf ≥ 0 may
be exponential, so a different method of proof would be needed.

In [3] Anderson uses similar covering arguments to show, for example,
that if Ric ≥ 0 and M has Euclidean volume growth then π1(M) is
finite. He also finds interesting relationships between the first betti
number, volume growth, and finite generation of fundamental group of
manifolds with Ric ≥ 0. These relationships also carry over to manifolds
satisfying the hypotheses of Theorem 5.4. We leave these statements to
the interested reader.

Applying the relative volume comparison Theorem 1.2 we also have
the following extensions of theorems of Gromov [16] and Anderson [2].

Theorem 5.6. For the class of manifolds Mn with Ricf ≥ (n−1)H,
diamM ≤ D and |f | ≤ k (|∇f | ≤ a), the first Betti number b1 ≤
C(n, k,HD2) (C(n,HD2, aD)).

Theorem 5.7. For the class of manifolds Mn with Ricf ≥ (n−1)H,
Volf ≥ V , diamM ≤ D and |f | ≤ k (|∇f | ≤ a) there are only finitely
many isomorphism types of π1(M).

Remark. In the case when |∇f | is bounded, Ricf bounded from below

implies RicN
f is also bounded from below (with different lower bound).

Therefore in this case the results can also been proven using the volume
comparison in [39, 24, 6] for the RicN

f tensor.

6. The Splitting Theorem.

An important application of the mean curvature comparison is the
extension of the Cheeger-Gromoll splitting theorem. After writing the
original version of this paper, we learned that Lichnerowicz had proven
the splitting theorem, see [21, 22].
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Theorem 6.1 (Lichnerowicz-Cheeger-Gromoll Splitting Theorem).
If Ricf ≥ 0 for some bounded f and M contains a line, then M =
Nn−1 × R and f is constant along the line.

For completeness we retain our complete proof here.

Remark. In [12] Fang, Li, and Zhang show that only an upper bound
on f is needed in the above theorem. Example 2.2 shows that the upper
bound on f is necessary.

Recall that mf = ∆f (r), the f -Laplacian of the distance function.
From (1.1), we get a local Laplacian comparison for distance functions

(6.1) ∆f (r) ≤ n+ 4k − 1

r
for all x ∈M \ {p,Cp}.

Where Cp is the cut locus of p. To prove the splitting theorem we
apply this estimate to the Busemann functions.

Definition 6.2. If γ is a ray then Busemann function associated to
γ is the function

(6.2) bγ(x) = lim
t→∞

(t− d(x, γ(t))).

From the triangle inequality the Busemann function is Lipschitz con-
tinuous with Lipschitz constant 1 and thus is differential almost every-
where. At the points where bγ is not smooth we interpret the f -laplacian
in the sense of barriers.

Definition 6.3. For a continuous function h on M, q ∈M , a function
hq defined in a neighborhood U of q, is a lower barrier of h at q if hq is
C2(U) and

(6.3) hq(q) = h(q), hq(x) ≤ h(x) (x ∈ U).

Definition 6.4. We say that ∆f (h) ≥ a in the barrier sense if, for
every ε > 0, there exists a lower barrier function hε such that ∆f (hε) >
a − ε. An upper bound on ∆f is defined similarly in terms of upper
barriers.

The local Laplacian comparison is applied to give the following key
lemma.

Lemma 6.5. If M is a complete, noncompact manifold with Ricf ≥ 0
for some bounded function f then ∆f (bγ) ≥ 0 in the barrier sense.

Remark. As in [12], one can use the inequality (3.19) to prove Lemma
6.5 only assuming an upper bound on f .

Proof. For the Busemann function at a point q we have a family of
barrier functions defined as follows. Given ti → ∞, let σi be minimal
geodesics from q to γ(ti), parametrized by arc length. The sequence
σ′i(0) subconverges to some v0 ∈ TqM . We call the geodesic γ such that
γ′(0) = v0 an asymptotic ray to γ.
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Define the function ht(x) = t − d(x, γ(t)) + bγ(q). Since γ is a ray,
the points q = γ(0) and γ(t) are not cut points to each other, therefore
the function d(x, γ(t)) is smooth in a neighborhood of q and thus so is
ht. Clearly ht(q) = bγ(q), thus to show that ht is a lower barrier for bγ

we only need to show that ht(x) ≤ bγ(x). To see this, first note that for
any s,

(6.4) −d(x, γ(t)) ≤ −d(x, γ(s)) + d(γ(s), γ(t))

= s− d(x, γ(s)) − s+ d(γ(s), γ(t)).

Taking s→ ∞ this gives

(6.5) −d(x, γ(t)) ≤ bγ(x) − bγ(γ(t)).

Also,

bγ(q) = lim
i→∞

(ti − d(q, γ(ti)))

= lim
i→∞

(ti − d(q, σi(t)) − d(σi(t), γ(ti)))

= −d(q, γ(t)) + lim
i→∞

(ti − d(σi(t), γ(ti)))

= −t+ bγ(γ(t)).(6.6)

Combining (6.5) and (6.6) gives

(6.7) ht(x) ≤ bγ(x),

so ht is a lower barrier function for bγ . By (6.1), we have that

(6.8) ∆f (ht)(x) = ∆f (−d(x, γ(t))) ≥ −n+ 4k − 1

t
.

Taking t→ ∞ proves the lemma. q.e.d.

Note that since ∆f is just a perturbation of ∆ by a lower order term,
the strong maximum principle and elliptic regularity still hold for ∆f .
Namely if h is a continuous function such that ∆f (h) ≥ 0 in the barrier
sense and h has an interior maximum then h is constant and if ∆f (h) = 0
(i.e ≥ 0 and ≤ 0) in the barrier sense then h is smooth. We now apply
the lemma and these two theorems to finish the proof of the splitting
theorem.

Proof of Theorem 6.1. Denote by γ+ and γ− the two rays which form
the line γ and let b+, b− denote their Busemann functions.

The function b+ + b− has a maximum at γ(0) and satisfies ∆f (b+ +
b−) ≥ 0, thus by the strong maximum principle the function is constant
and equal to 0. But then b+ = −b− so that 0 ≤ ∆f (b+) = −∆f (b−) ≤ 0
which then implies, by elliptic regularity, that the functions b+ and b−

are smooth.
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Moreover, for any point q we can consider asymptotic rays γ+ and

γ− to γ+and γ− and denote their Busemann functions by b
+

and b
−
.

From (6.7) it follows that

(6.9) b
+
(x) + b+(q) ≤ b+(x).

The next step is to show that this inequality is, in fact, an equality when
γ+ extends to a line.

First we show that the two asymptotic rays γ+ and γ− form a line.
By the triangle inequality, for any t

d(γ+(s1), γ−(s2)) ≥ d(γ−(s2), γ+(t)) − d(γ+(t), γ+(s1))

= t− d(γ+(t), γ+(s1)) − (t− d(γ−(s2), γ+(t)),

so by taking t→ ∞ we have

d(γ+(s1), γ−(s2)) ≥ b+(γ+(s1)) − b+(γ−(s2))

= b+(γ+(s1)) + b−(γ−(s2))

≥ b
+
(γ+(s1)) + b+(q) + b

−
(γ−(s2)) + b−(q)

= s1 + s2.

Thus, any asymptotic ray to γ+ forms a line with any asymptotic ray
to γ−. Applying the same argument given above for b+ and b− we see

that b
+

= −b−. By Applying (6.9) to b−

−b−(x) − b−(q) ≥ −b−(x).

Substituting b+ = −b− and b
+

= −b− we have

b
+
(x) + b+(q) ≥ b+(x).

This along with (6.9), gives

b
+
(x) + b+(q) = b+(x).

Thus, b
+

and b+ differ only by a constant. Clearly, at q the derivative

of b
+

in the direction of γ′+(0) is 1. Since b
+

has Lipschitz constant 1,
this implies that ∇b+(q) = γ ′+(0).

From the Bochner formula (3.2) and a direct computation one has
the following Bochner formula with measure,

(6.10)
1

2
∆f |∇u|2 = |Hess u|2 + 〈∇u,∇(∆fu)〉 + Ricf (∇u,∇u).

Now apply this to b+, since ||∇b+|| = 1, we have

(6.11) 0 = ||Hess b+||2 + ∇b+(∆f (b+)) + Ricf (∇b+,∇b+).

Since ∆f (b+) = 0 and Ricf ≥ 0 we then have that Hess b+ = 0 which,
along with the fact that ||∇b+|| = 1 implies that M splits isometrically
in the direction of ∇b+.
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To see that f must be constant in the splitting direction note that
from (6.11) we now have Ricf (∇b+,∇b+) = 0 and ∇b+ points in the
splitting direction so Ric(∇b+,∇b+) = 0. Therefore Hessf(∇b+,∇b+) =
0. Since f is bounded f must be constant in ∇b+ direction. q.e.d.

As Lichnerowicz points out, the clever covering arguments in [10]
along with Theorem 6.1 imply the following structure theorem for com-
pact manifolds with Ricf ≥ 0.

Theorem 6.6. If M is compact and Ricf ≥ 0 then M is finitely

covered by N×T k where N is a compact simply connected manifold and
f is constant on the flat torus T k.

Theorem 6.6 has the following topological consequences.

Corollary 6.7. Let M be compact with Ricf ≥ 0 then

1) b1(M) ≤ n.
2) π1(M) has a free abelian subgroup of finite index of rank ≤ n.
3) b1(M) or π1(M) has a free abelian subgroup of rank n if and only

if M is a flat torus and f is a constant function.
4) π1(M) is finite if Ricf > 0 at one point.

We also note that the splitting theorem has been used by Oprea
[30] to derive information about the Lusternik-Schnirelmann category of
compact manifolds with non-negative Ricci curvature. These arguments
also clearly carry over to the Ricf case.

For noncompact manifolds with positive Ricci curvature the splitting
theorem has also been used by Cheeger and Gromoll [10] and Sormani
[41] to give some other topological obstructions. These results also hold
for Ricf with f bounded.

Theorem 6.8. Suppose M is a complete manifold with Ricf > 0 for
some bounded f then

1) M has only one end and
2) M has the loops to infinity property.

In particular, if M is simply connected at infinity then M is simply
connected.

7. Other applications of the mean curvature comparison.

Theorem 1.1 can be used to prove an excess estimate. Recall that
for p, q ∈ M the excess function is ep,q(x) = d(p, x) + d(q, x) − d(p, q).
Let h(x) = d(x, γ) where γ is a fixed minimal geodesic from p to q,
then (1.4) along with the arguments in [1, Proposition 2.3] imply the
following version of the Abresch-Gromoll excess estimate.
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Theorem 7.1. Let Ricf ≥ 0, |f | ≤ k and h(x) < min{d(p, x), d(q, x)}
then

ep,q(x) ≤ 2

(

n+ 4k − 1

n+ 4k − 2

)(

1

2
Chn+4k

)
1

n+4k−1

where

C = 2

(

n+ 4k − 1

n+ 4k

)(

1

d(p, x) − h(x)
+

1

d(q, x) − h(x)

)

.

Remark. (1.2) also implies an excess estimate for manifolds with Ric ≥
(n − 1)H and |∇f | ≤ a, however the constant C will depend on H ·
d(p, q)2 and eah. The mean curvature comparison for RicN

f discussed in
the appendix also implies an excess estimate.

Theorem 7.1 gives extensions of theorems of Abresch-Gromoll [1] and
Sormani [40] to the case where Ricf ≥ 0 for a bounded f .

Theorem 7.2. Let be Ma complete noncompact manifold with Ricf≥
0 for some bounded f .

1) If M has bounded diameter growth and sectional curvature bounded
below then M is homeomorphic to the interior of a compact man-
ifold with boundary.

2) If M has sublinear diameter growth then M has finitely generated
fundamental group.

Remark. If we consider |f | ≤ k, the arguments in [1] and [40] say
slightly more. Namely, the diameter growth in the first part can be
of order ≤ 1

n+4k−1 and in the second part one can derive a explicity
constant Sn,k such that the diameter growth only needs to be ≤ Sn,k · r.
Also see [49] and [47].

We can also apply the mean curvature comparison to the excess func-
tion to prove the Myers’ theorem. We note that the excess function was
also used to prove a Myers’ theorem in [33]. It is interesting that this
proof is exactly suited to our situation, since we only have a uniform
bound on mean curvature when r ≤ π

2
√

H
, while other arguments do not

seem to easily generalize.

Proof of Theorem 1.4.
Let p1, p2 are two points in M with d(p1, p2) ≥ π√

H
and set B =

d(p1, p2) − π√
H

.

Let r1(x) = d(p1, x) and r2(x) = d(p2, x) and e be the excess function
for the points p1 and p2. By the triangle inequality, e(x) ≥ 0 and
e(γ(t)) = 0 where γ is a minimal geodesic from p1 to p2. Therefore,
∆f (e)(γ(t)) ≥ 0.
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Let y1 = γ
(

π

2
√

H

)

and y2 = γ
(

π

2
√

H
+B

)

. For i = 1, 2 ri(yi) = π

2
√

H

so, by (3.18), we have

(7.1) ∆f (ri(yi)) ≤ 2k
√
H.

(1.3) does not give an estimate for ∆f (r1(y2)) since r1(y2) >
π

2
√

H
but

by (3.1) and (7.1) we have

(7.2) ∆f (r1(y2)) ≤ 2k
√
H −B(n− 1)H.

So

(7.3) 0 ≤ ∆f (e)(y2) = ∆f (r1)(y2) + ∆f (r2)(y2) ≤ 4k
√
H −B(n− 1)H

which implies B ≤ 4k

(n−1)
√

H
and d(p1, p2) ≤ π√

H
+ 4k

(n−1)
√

H
. q.e.d.

As we have seen, there is no bound on the distance between two
points in a complete manifold with Ricf ≥ (n − 1)H > 0. However, by
slightly modifying the argument above one can prove a distance bound
between two hypersurfaces that depends on the f -mean curvature of
the hypersurfaces, here for a hypersurface N the f -mean curvature at
a point x ∈ N with respect to the normal vector n is

(7.4) Hf
n(x) = Hn(x) + 〈n,∇f〉(x)

where Hn is the regular mean curvature. mf is then the f -mean curva-
ture of the geodesic sphere with respect to the inward pointing normal.

Theorem 7.3. Let Ricf ≥ (n − 1)H > 0 and let N1 and N2 be two
compact hypersurfaces in M then

(7.5) d(N1, N2) ≤
maxp∈N1

|Hf
n1

(p)| + maxq∈N2
|Hf

n2
(q)|

2(n− 1)H
.

Proof. Let eN1,N2
(x) = r1(x)+r2(x)−d(N1, N2) where ri(x) = d(x,Ni).

Then, by applying the Bochner formula to ri in the same way we applied
it to the distance to a point in Section 2, we have

∆f (ri)(x) ≤ max
p∈Ni

|Hf
ni

(x)| − (n − 1)Hd(Ni, x).

One now can prove the theorem using a similar argument as in the proof
of Theorem 1.4. q.e.d.

A similar argument also shows Frankel’s Theorem is true for Ricf .

Theorem 7.4. Any two compact f -minimal hypersurfaces in a man-
ifold with Ricf > 0 intersect.

One also has a rigidity statement when Ricf ≥ 0 and M has two f -
minimal hypersurface which do not intersect, see [35] for the statement
and proof in the Ric ≥ 0 case.
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Appendix A. Mean curvature comparison for

N-Bakry-Emery Ricci tensor

In [6] the volume comparison theorem and Myers’ theorem for the N -
Bakry-Emery Ricci tensor are proven using what we have called a mean
curvature comparison (actually their work is slightly more general than
the cases treated in this paper). In this appendix, for clarity, we state
this comparison in the language we have used above, which is standard
in Riemannian geometry.

Recall the definition of the N -Bakry-Emery tensor is

RicN
f = Ricf − 1

N
df ⊗ df for N > 0.

The main idea is that the a Bochner formula holds for RicN
f that

looks like the Bochner formula for the Ricci tensor of an n+N dimen-
sional manifold . This formula seems to have been Bakry and Emery’s
original motivation for the definition of the Bakry-Emery Ricci tensor
and for their more general curvature dimension inequalities for diffusion
operators [4]. See [18, 19] for elementary proofs of the inequality.

1

2
∆f |∇u|2 ≥ (∆f (u))2

N + n
+ 〈∇u,∇(∆fu)〉 + RicN

f (∇u,∇u)
For the distance function, we have

m′
f ≤ − (mf )2

n+N − 1
− RicN

f (∂r, ∂r).

Thus, using the standard Sturm-Liouville comparison argument one has
the mean curvature comparison.

Theorem A.1 (Mean curvature comparison for N -Bakry-Emery).
[6] Suppose that N > 0 and RicN

f ≥ (n+N − 1)H, then

mf (r) ≤ mn+N
H (r).

This comparison along with the methods used above gives proofs of
the comparison theorems for RicN

f .

The Bochner formula for RicN
f has many other applications to other

geometric problems not treated here such as eigenvalue problems and
Liouville theorems, see for example [5] and [19] and the references there
in.

Appendix B. ODE proof of mean curvature comparison

In this section we include our original proof of the mean curvature
comparison which uses somewhat different methods.

Theorem B.1 (Mean Curvature Comparison). Assume Ricf (∂r, ∂r)
≥ (n− 1)H.
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a) If ∂rf ≥ −a (a ≥ 0) along a minimal geodesic segment from p

(when H > 0 assume r ≤ π/2
√
H) then

(B-1) mf (r) −mH(r) ≤ a

along that minimal geodesic segment from p. Equality holds if and only
if the radial sectional curvatures are equal to H and f(t) = f(p) − at
for all t < r.
In particular when a = 0, we have

(B-2) mf (r) ≤ mH(r)

and equality holds if and only if all radial sectional curvatures are H
and f is constant.

b) If |f | ≤ k along a minimal geodesic segment from p (when H > 0

assume r ≤ π/2
√
H) then

(B-3) mf (r) −mH ≤ (n− 1)e
4k

n−1

(

√

|H|snH(2r) + 2|H|r
sn2

H(r)

)

along that minimal geodesic segment from p, where snH(r) is the unique
function satisfying

sn′′
H(r) +HsnH(r) = 0, snH(0) = 0, sn′

H(0) = 1.

In particular when H = 0 we have

(B-4) mf (r) − n− 1

r
≤ 4(n− 1)e

4k
n−1

1

r
.

Proof. We comparemf to the mean curvature of the model space. Using
Ricf ≥ (n− 1)H, and subtracting (3.6) by (3.5) gives

(mf −mH)′ ≤ − 1

n− 1

[

(mf + ∂rf)2 −m2
H

]

= − 1

n− 1
[(mf −mH + ∂rf)(mf +mH + ∂rf)] .(B-5)

Proof of Part a). Write (B-5) as the following
(B-6)

(mf−mH−a)′ ≤ − 1

n− 1
[(mf −mH − a+ a+ ∂rf)(mf +mH + ∂rf)] .

Let us define ψa,H = max{mf − mH − a, 0} = (mf −mH − a)+, and
declare that ψa,H = 0 whenever it becomes undefined. Since ∂rf ≥ −a,
a+∂rf ≥ 0. When ψa,H ≥ 0, mf +mH +∂rf ≥ a+∂rf +2mH ≥ 2mH

which is ≥ 0 if mH ≥ 0. Using this and (B-6) gives

(B-7) ψ′
a,H ≤ − 1

n− 1
(mf +mH + ∂rf)ψa,H ≤ 0.

Since limr→0 ψa,H(r) = (−∂fr(0)−a)+ = 0, we have ψa,H(r) = 0 for all
r ≥ 0. This finishes the proof of the inequality.
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Now suppose that mf = mH + a, then from (B-5) we have that
m = mH which implies that ∂rf = −a. So ∂2

rf ≡ 0 which then implies
that Ric(∂r, ∂r) = Ricf (∂r, ∂r) ≥ (n − 1)H. Now the rigidity for the
regular mean curvature comparison implies that all the sectional curva-
tures are constant and equal to H.

Proof of Part b). By (B-5) we have

(B-8) (mf −mH)′ ≤

− 1

n− 1

[

(mf −mH)2 + 2(mH + ∂rf)(mf −mH) + ∂rf(2mH + ∂rf)
]

.

Now define ψ = max{mf − mH , 0} = (mf − mH)+, the error from
the mean curvature comparison, and declare that ψ = 0 whenever it
becomes undefined. Define

(B-9) ρ =

[

− 1

n− 1
∂rf(2mH + ∂rf)

]

+

.

Using this notation and inequality (B) we obtain

(B-10) ψ′ ≤ − 1

n− 1
ψ2 − 2

n− 1
(mH + ∂rf)ψ + ρ.

We would like to estimate ψ in terms of ρ. It is enough to use the linear
differential inequality

(B-11) ψ′ +
2

n− 1
(mH + ∂rf)ψ ≤ ρ.

When ∂rf = 0 (in the usual case), we have ρ = 0 and ψ = 0, getting the
classical mean curvature comparison. In general, by (B-9), the definition
of ρ, when mH > 0

(B-12) ρ > 0 ⇐⇒ −2mH < ∂rf < 0.

Also

(B-13) ρ ≤
(

− 2

n− 1
(∂rf)mH

)

+

.

Therefore we have

ρ ≤ 4

n− 1
m2

H .

Note that mH = (n− 1)
sn′

H(r)
snH(r) . Now (B-11) becomes

ψ′ +

(

2
sn′

H(r)

snH(r)
+

2

n− 1
∂rf

)

ψ ≤ 4(n− 1)

(

sn′
H(r)

snH(r)

)2

.

Multiply this by the integrating factor sn2
H(r)e

2

n−1
f(r) to obtain

(

sn2
H(r)e

2

n−1
f(r)ψ(r)

)′
≤ 4(n− 1)e

2

n−1
f(r)(sn′

H(r))2.
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Since ψ(0) is bounded, integrate this from 0 to r gives

(B-14) sn2
H(r)e

2

n−1
f(r)ψ(r) ≤ 4(n − 1)

∫ r

0
e

2

n−1
f(t)(sn′

H(r))2dt.

Since |f | ≤ k, we have

ψ(r) ≤ (n− 1)e
4k

n−1

(

√

|H|snH(2r) + 2|H|r
sn2

H(r)

)

.

When H = 0, snH(r) = r, from (B-14) we get

ψ(r) ≤ 4(n − 1)e
4k

n−1
1

r
.

This completes the proof of Part b). q.e.d.
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